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Abstract 

In this paper, we introduce a new mathematical programming approach to estimate the 

parameters of fuzzy linear regression with crisp/fuzzy input and fuzzy output. The advantage 

of this approach is, both of dependent and independent variables are influenced on the 

objective function. Therefore, this model rectifies some problems about outliers. Also, in this 

paper we use possibility function in constraints. To compare the performance of the proposed 

approach with previous methods, three examples are presented.   
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Introduction 

Fuzzy linear regression was proposed by Tanaka et al
.(1)

 in 1982.Many different fuzzy 

regression approaches have been proposed by different researchers since then, and also this 

subject has drawn much attention from more and more people concerned. In general, there are 

two approaches in fuzzy regression analysis: linear programming-based method 
(1 – 6)

 and 

fuzzy least squares method 
(2, 7- 15)

. The first method is based on minimizing fuzziness as an 

optimal criterion. The second method used least-square of errors as a fitting criterion. The 

advantage of first approach is its simplicity in programming and computation, while that the 

degree of fuzziness between the observed and predicted values is minimized by using fuzzy 

least squares method. Tanaka et al
.(1)

 regarded fuzzy data as a possibility distribution, the 

deviations between the observed values and the estimated values were supposed to be due to 

fuzziness of system structure. This structure was represented as a fuzzy linear function whose 

parameters were given by fuzzy sets. They resorted to linear programming to develop their 

regression model. Sakawa and Yano 
(16) 

concentrated on a fuzzy linear regression model that 

assumes the residuals are caused by the vagueness, both the parameters the model and of the 

input data simultaneously. 

Heshmaty and Kandel 
(17)

 applied fuzzy regression to forecast the computer sales in 

the United State in a uncertain environment. In addition, other researchers have devoted their 

efforts to improve the application capability of this fuzzy regression methodology. In this 

direction, Moskowitz and Kim 
(18)

 studied the relation ship among the H value, membership  

function shape, and the spreads of fuzzy parameters in fuzzy linear regression models, also, 

developing a systematic linear approach to assess the proper H parameter values. Kim et al
. (19) 
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and Kim and Chen 
(11)

 made a comparison of fuzzy and nonparametric linear regression and 

concluded that when size of a data is small, error terms have small variability, and the 

relationships among variable are not well specified, fuzzy linear regression outperforms 

nonparametric linear regression with respect to descriptive capability which is concerned with 

how close the estimated model parameters are to the true parameters value. 

Redden and Woodal 
(20) 

showed the proposed models by Sakawa and Yano 
(16)

 are 

extremely sensitive to outlier. The existence of outlier in a set of experimental data can cause 

incorrect interpretation of the fuzzy linear regression results, Peters 
(21)

 consider this problem 

for the non-fuzzy input and non-fuzzy output data type. Chen 
(22)

 focuses on non-fuzzy input 

and fuzzy output data type and proposes approaches to handle the outlier problem. 

In this paper, we propose a new mathematical programming approach when the 

independent variables are crisp/fuzzy and the dependent variable is fuzzy to rectify above 

problem. 

The paper is organized as follows. In section 2, some elementary properties of fuzzy 

numbers and fuzzy linear regression are described. The propose method is presented in 

section 3. Three numerical examples are illustrated to compare the proposed method with 

previous ones, in section 4.conclusions are drawn in section 5.  

 
Preliminaries 

In this section, we describe fuzzy regression methods based on the linear fuzzy model  with 

symmetric triangular fuzzy coefficient 
(23, 6).

 The aim of fuzzy regression is to minimize the 

fuzziness of the linear fuzzy model that includes all the given data. So we need some 

definitions to describe fuzzy regression. 

Recall that a fuzzy number A
~

is a convex normalized fuzzy subset of the real line R with 

an upper semi-continuous membership function of bounded support 
(2)

. 

 

Definition 2.1. A symmetric fuzzy number A
~

, denoted by LcA ),(
~

α=  is defined as 

0,)/)(()(
~

>−= ccxLxA α , Where α  and c  are the center and spread of A
~

, 

respectively, and )(xL  is a shape function of fuzzy numbers such that : 

 

i) )()( xLxL −= , 

ii) 0)1(,1)0( == LL , 

iii) )(xL is strictly decreasing function for 0≥x , 

iv) L  is invertible on ]1,0[ . 

The set of all symmetric fuzzy numbers is denoted by )(RFL . If xxL −=1)( , then the 

fuzzy number is a symmetric triangular fuzzy number.  

Definition 2.2. Suppose LcA ),(
~

α= is a symmetric fuzzy number and R∈λ , then      

Lc)||,(
~

λλαλ =Α .   

 

Definition 2.3. 
(24)

, For )(
~

RFL∈Α  and 10 ≤≤ r , the r -level cuts of Α
~

               

is as follows: 

{ }
{ }





=>Α

≤<≥Α
=Α

0,0)(
~

10,)(
~

]
~

[
rxx

rrxx
r            (1). 
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Dubois and Prade, [2], proposed three indices for the equalities between two fuzzy 

numbers Α
~

 and Β
~

. 

 

Definition 2.4. Α
~

 , Β
~

 are two fuzzy numbers, then  

 i) )}},(
~

),(
~

{{minsup)
~~

( xxPos
Rx

ΒΑ=Β=Α
∈

 

ii) )}},(
~

),(
~

1{{maxinf)
~~

( xxNes
Rx

ΒΑ−=Β⊂Α
∈

 

iii) )}},(
~

1),(
~

{{maxinf)
~~

( xxNes
Rx

Β−Α=Β⊃Α
∈

 

where Pos and Nes  are short for Possibility and Necessity, see
[2]

.  

                                

 

The fuzzy linear regression model is as  

 

            )2(,,2,1,
~~~~~~~

1100 niXXXY ippiii KK =⊗Α⊕⊕⊗Α⊕⊗Α=      

 

where Lijijij rxX ),(
~

=  are symmetric fuzzy numbers of the j-th independent variable in the 

i-th observation and pjc Ljjj ,,1,0,),(
~

K==Α α  are fuzzy parameters. Also, the dependent 

variable is symmetric fuzzy number, i.e., Liii eyY ),(
~

= .   

If the independent variables are crisp, the fuzzy linear regression model (2) reduce to the 

following model by using definition 2.2: 

 

             )3(.,,2,1,
~~~~

1100 niXXXY ippiii KK =Α⊕⊕Α⊕Α=  

  Tanaka et al. 
(23,6)

 formulated a linear programming problem for linear regression with 

crisp input and fuzzy output, called MIN problem, as follows: 

 

 Minimize  ∑∑
= =

n

i

p

j

ijj xc
1 0

||  

Subject to:  

niehLyxchLx

niehLyxchLx

ii

p

j

ij

p

j

jijj

ii

p

j

ij

p

j

jijj

,,2,1|)(||||)(|

,,2,1|)(||||)(|

1

0 0

1

1

0 0

1

K

K

=−≤−

=+≥+

−

= =

−

−

= =

−

∑ ∑

∑ ∑

α

α

                (4) 

 

                                            .,,1,00 pjcR jj K=≥∈α  

 

In this model, the constraints guarantee the support of the estimated values from the 

regression model includes the support of the observed values in −h level )10( ≤≤ h . 

There have been a few criticisms of Tanaka et al.’s approach. One of shortcoming is, if we 

replace ix  by )( ii xx − , then the estimated function will be very different, 
(25)

. Some articles 

have proposed major changes to Tanaka et al.’s approach. Savic & Pedrycz 
(14)

 and Tanaka et 

al
. [26]

 suggested, first find the centers, jα , then solve LP with these jα ’s. Hojati et al. 
(27)

 and 

Sakawa & Yano 
(16)

 and Razzaghnia et al. 
(4,5)

 changed the objective function according to 
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improve mentioned problems. In the next section, we propose a new mathematical 

programming approach to overcome the above shortcoming. 

  

The proposed approach 
In this section, we propose a new mathematical programming approach to compute the 

distance between the observed and the estimated values and change the constraints of Tanaka 

et al.’s model to determine the fuzzy parameters jΑ
~

 for pj ,,1,0 K=  of model (2), where jΑ
~

 

is assumed to be a symmetric fuzzy number as defined by definition 2.1.   

 

Definition 3.1: 
(12)

 Let ]1,0[C  denote the class of all real-valued bounded functions over 

[0,1] where is left continuous on [0,1], has a right limit for all )1,0[∈r  and is right continuous 

at 0=r . The mapping j , embeds )(RFL  into ]1,0[]1,0[ CC ×  as follows  : 

                ( )5))(,)(())(),(()
~

(
11

crLcrLrrj
−−

−

−
+−=ΑΑ=Α αα  

where )(r
−
Α  and )(r

−

Α  denote the left and right endpoints of the closed interval r][
~

Α ( )0(
−
Α  

and )0(
−

Α  are the endpoints of the closed interval 
0

~

][Α ). As stated in [24]: 

i)  )(r
−
Α  is a bounded left continuous non-decreasing function over ]1,0[ ; 

ii) )(r
−

Α  is a bounded left continuous non-increasing function over ]1,0[ ;              

iii) .10,)()( ≤≤Α≤Α
−

−
rrr  

 

Definition 3.2: 
(28)

, Let ( )RFL∈ΒΑ
~

,
~

 where ))(),(()(
~

rrj
−

−
ΑΑ=Α  and ))(),(()(

~

rrj
−

−
ΒΒ=Β . 

The metric 2D  on ( )RFL  is defined as follows:  

             ( ),6))()(())()(()
~

,
~

(
2

1

0

21

0

2

2 drrrdrrrD ∫∫
−−

−−
Β−Α+Β−Α=ΒΑ  

, i.e., the distance between Α
~

 and Β
~

 is in ]1,0[]1,0[ CC × . 

 

In this paper, we extended the constraint conditions (4) to possibility and necessity linear 

regression analysis with fuzzy input-output data, where Lijijij rxX ),(
~

=  and Liii eyY ),(
~

= . 

Using extension principle 
[29]

 based on MT , the difficulty in treating model (2) of fuzzy 

input-output data is that ijj X
~~

⊗Α  may not be a symmetric fuzzy number. Although the 

product of two symmetric fuzzy numbers may not be a symmetric fuzzy number, Dubois and 

Prade 
(2)

 presented an approximation form. Here, the idea of approximation is used to 

determine fuzzy parameters of the model (2). 

By applying extension principle, 
(29)

, and the approximation formula for ijj X
~~

⊗Α , the 

estimated value ( iY
~

) can be approximated by symmetric fuzzy number as 
Lii dy ),(  where  

 ,
0

ij

p

j

ji xy ∑
=

= α                                                                                             (7) 

∑
=

+=
p

j
jijijji rxcd

0

).||||( α  
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 The objective function of mathematical model: In fuzzy linear regression model (2), the 

objective function, is to minimize the total distance between observed and estimated values, 

i.e. )
~

,
~

(
1

2

2 ii

n

i

YYD∑
=

. 

    

   The constraints of mathematical model:   

  (1) hYYPos ii ≥= )
~~

(  

  (2) hYYNes ii ≥⊂ )
~~

( , 

These constraint conditions guarantee the degree of fitness of the fuzzy linear regression 

model is greater than or equal to a threshold h , where 10 ≤≤ h . 

To compute the constraints of the proposed model, we need following theorem. 

 

Theorem 3.1: 
(16)

, (1) hYYPos ii ≥= )
~~

( , ni ,,2,1 K=  if and only if  

,)()(
11

iiii ehLydhLy
−− +≤−  and ,)()(

11
iiii ehLydhLy

−− −≥+  

(2) hYYNes ii ≥⊂ )
~~

( , ni ,,2,1 K=  if and only if  

,)()(
11

iiii ehLydhLy
−− −≤−  and .)()(

11
iiii ehLydhLy

−− +≥+  (see Fig. 1 and Fig. 2.) 

 

 
Fig. 1: Possibility of two fuzzy numbers 

 

 

 

 

 
 

 

 

 

 

 

 

 

Fig. 2: Necessity of two fuzzy numbers 

The model: By definition 3.1. and 3.2. we have: 

 

        ))(,)(()
~

( 11
iiiii erLyerLyYj −− +−= , 

        ))(,)(()
~

(
11

iiiii drLydrLyYj
−− +−= . 
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 The resulting mathematical model is as follows: 

    ==∑
=

)
~

,
~

()(:1
1

2

2 ii

n

i

YYDhZMinimizePM  

[ ]∑∫
=

−− −−−
n

i
iiii drdrLyerLy

1

1

0

211 ))(())((  

[ ]∑∫
=

−− +−++
n

i
iiii drdrLyerLy

1

1

0

211 ))(())((      (8) 

 

   Subject to:              ,)()(
11

iiii ehLydhLy
−− +≤− ni ,,2,1 K= , 

                                   ,)()(
11

iiii ehLydhLy
−− −≥+ ni ,,2,1 K= .            (9) 

                                   .,,1,00 pjcR jj K=≥∈α  

    

)8(:2 MinimizePM  

    

 Subject to:               ,)()(
11

iiii ehLydhLy
−− −≤− ni ,,2,1 K= , 

                                   ,)()(
11

iiii ehLydhLy
−− +≥+ ni ,,2,1 K= .            (10) 

                                   .,,1,00 pjcR jj K=≥∈α  

The constraint conditions in (9) means that the h-level sets of the estimated values and 

observed values should intersect with each other and the constraint conditions in (10) means 

that the h-level sets of the estimated values should include the h-level sets of the observed 

values. 

 

The model is a mathematical programming model and can be solved by the existing soft 

wares. 

Theorem 3.2: Given the data ,,,2,1),),(,),(( nieyrx LiiLii K= there is an optimal solution 

pjc Ljjj ,,1,0,),(
~

K==Α α  for 10 <≤ h  in PM1 and PM2. 

 

Remark 3.1: If 1=h , then 0)(1 =−
hL . Hence the following equation must hold 

 

 ippii xxy ααα +++= K110 , .,,2,1 ni K=  

 

Thus in general, there is no solution because the given data do not usually satisfy the 

equation. To rectify this shortcoming, Razzaghnia et al. 
(30)

 extended the symmetric triangular 

fuzzy numbers to asymmetric trapezoidal fuzzy numbers.   

 

Theorem 3.3: The value of objective function for 2h  is greater than or equal to the value 

of objective function for 1h  such that 21 hh <  in PM2. 

 

Proof: Suppose that 1S  is all of the possible solution for PM2 at level 1h  and 2S  is all of 

the possible solution for PM2 at level 2h . It is sufficient to show 12 SS ⊆ . In PM2, 

niex ii ,,2,1|| K=≥α  and by definition 2.1, )()( 1
1

2
1

hLhL
−− <  for 21 hh < , therefore 

iiii ehLxhLehLxhL )(||)()(||)( 1
1

1
1

2
1

2
1 −−−− −≤− αα  and   12 SS ⊆ . 
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To evaluate the performance of a fuzzy regression model, Kim & Bishu in 
(31)

 used the 

absolute difference between the membership values of the observed and estimated values as:   

                                              

        ∫ ∪
−

)
~

()
~

(
|)(

~
)(

~
|

ii YSYS
iii dyyYyY=E                                              (11) 

Where )
~

(
i

YS and )
~

(
i

YS are the support of  iY
~

 and 
iY

~
, respectively. In other words, 

iE  is the 

error in estimation. If 
iE  tends to zero, then the fitting is the best (see Fig. 3). 

 

 

 
Fig. 3: difference of membership function between 

the observed and estimated fuzzy numbers 

 

Numerical examples 

In this section, we use three examples to compare our proposed method with previous 

models. In the first example, the independent variable is crisp and the dependent variable is 

symmetric triangular fuzzy numbers, i.e., ||1)( xxL −= . In the second example, both of 

independent and dependent variables are symmetric triangular fuzzy numbers. To illustrate 

that our model is not sensitive to outliers the third example is presented. 

 

Example 4.1. Tanaka et al. in 
(23)

 designed an example to illustrate their regression model. 

In this example, there are five pairs of )),(,( iii eyx  observations as shown in Table 1.  

 
Table 1. crisp input and fuzzy output data for example 4.1(h=0) 

 

 

 

By using the proposed methods, the fuzzy linear regression models are constructed as:  

                       iLLi xYPM )16.0,71.1()84.1,950.4(
~

:1 ⊕=  

                     iLLi xYPM )106.0,985.1()646.3,087.4(
~

:2 ⊕=  

 

input data Fuzzy output data Estimation intervals 

ix  iy  
ie  Tanaka et al. PM1 PM2 

1 8.0 1.8 [2.1,9.8] [4.6,8.6] [2.3,9.8] 

2 6.4 2.2 [4.2,11.9] [6.2,10.5] [4.1,11.9] 

3 9.5 2.6 [6.3,14.0] [7.7,12.4] [6.0,14.0] 

4 13.5 2.6 [8.4,16.1] [9.3,14.2] [7.9,16.0] 

5 13.0 2.4 [10.5,18.2] [10.8,16.1] [9.8,18.1] 
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To compare the performance of the models, the equation (11) is applied to calculate the 

errors in estimation the observed responses. The total error of the PM1 and PM2 (see Table 

2), are   better than the total error of Tanaka et al. model 
[23].

 
 

 

Table 2. Error in estimation for example 4.1(h=0) 
Number of 

observation 

Error in estimation 

Tanaka et al. PM1 PM2 

1 3.356 2.207 3.185 

2 2.850 3.050 2.863 

3 1.522 1.091 1.042 

4 2.257 2.844 2.616 

5 2.414 0.950 1.873 

Total error 12.399 10.142 11.579 

 

 

Example 4.2. This example is designed by Sakawa & Yano 
(16)

. In this example both of 

dependent and independent variables are fuzzy. The fuzzy input-output data are shown in 

Table 3. In [16], a value ∈  which represents the degree of conformity between the observed 

and estimated values must be specified beforehand. In this example the results for 5.0∈=  are 

adopted for comparison. 

 

 By using the PM1 and PM2, the fuzzy regression models are shown in Table 4. 
                                                     

 

Table 3. Fuzzy input-output data for Example 4.2 

Fuzzy input data Fuzzy output data 

ix  ir  iy  
ie  

2.0 0.5 4.0 0.5 

3.5 0.5 5.5 0.5 

5.5 1.0 7.5 1.0 

7.0 0.5 6.5 0.5 

8.5 0.5 8.5 0.5 

10.5 1.0 8.0 1.0 

11.0 0.5 10.5 0.5 

12.5 0.5 9.5 0.5 

       iLLi XYPM
~

)71.0,52.0()28.0,53.3(
~

:1 ⊗⊕=  

        iLLi XYPM
~

)66.1,56.0()61.0,39.3(
~

:2 ⊗⊕=  

Table 4. Estimated parameters and objective function 
 Sakawa & 

Yano 

PM1 PM2 

Z  18.26 12.02 15.58 

0α  3.20 3.53 3.39 

0c  0.17 0.28 0.61 

1α  0.58 0.52 0.56 

1c  0.08 0.71 1.66 

 

Example 4.3. In this example, there are five pairs observations as shown in Table 5,      

that the 
rd3  observation is outlier.  

 

Table 5. Numerical data and comparison of the estimated values for Example 4.3 
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Observations values Estimated values 

ix  Lii ey ),(  Sakawa & Yano Tanaka et al. PM1 PM2 

1 (6.4,2.2) (7.97,1.13) (8.23,4.03) (7.86,2.45) (9.17,6.34) 

2 (8.0,1.8) (10.44,2.26) (10.72,4.95) (9.53,2.57) (10.84,6.46) 

3 ∗)6.2,5.16(  
(12.90,3.39) (13.21,5.88) (11.25,2.69) (12.51,6.58) 

4 (11.5,2.6) (15.37,4.43) (15.40,6.80) (12.87,2.81) (14.18,6.70) 

5 (13.0,2.4) (17.83,5.66) (18.19,7.73) (14.54,2.93) (15.85,6.82) 

∗
Indicates the outlier. 

By using PM1 and PM2, the fuzzy linear regression models are 

                     iLLi xYPM )120.0,670.1()3345.2,1955.6(
~

:1 ⊕=  

                    iLLi xYPM )120.0,670.1()2297.6,5003.7(
~

:2 ⊕= . 

 

The estimated fuzzy values by Sakawa and Yano )4.0(∈= (16) 
and Tanaka et al

.(23)
 and Proposed 

Method, were compared with the observed fuzzy values in the right half of Table 5. The outlier is not 

influence on the estimated values in proposed methods, but in Tanaka et al. and Sakawa and Yano, the 

outlier changed the third, forth and fifth estimated values. To compare the performance of these 

models, equation (11) is used again. The results are shown in Table 6.  
  

  

Table 6. The estimation errors for Examples 4.3 
Number of 

observations 

Errors in estimations 

Tanaka    et al. PM1   PM2 

1 3.132 2.469 4.643 

2 4.353 2.532 4.705 

3 5.295 5.294 6.247 

4 6.532 2.401 4.588 

5 7.727 2.643 4.820 

Total error 27.039 15.339 25.003 

 

Conclusion 
In this paper, we proposed a mathematical programming approach to evaluate fuzzy 

parameters in fuzzy linear regression with crisp/fuzzy input and fuzzy output data. In this 

approach, the variation of data didn’t influence on estimations, because all of the unknown 

parameters used in objective functions, therefore it is useful for outliers and influence points 

in fuzzy regression.  
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