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Abstract 

Introduction: The quantitative structure-property relationship (QSPR) is a successful 
strategy for prediction of surfactant properties based on modeling between calculated 
descriptors from molecular structures of the surfactants and chemical or physical properties of 
the solution. There are a great number of molecular descriptors that have been used in such 
QSPR studies, which can be divided into six types, namely constitutional descriptors, 
topological descriptors, electrostatic descriptors, geometrical descriptors, quantum chemical 
descriptors and thermodynamic descriptors. There are some reports about the applications of 
QSPR approaches to predict the CMC of anionic, nonionic and Gemini surfactants. 

Aim: In the present work, the logCMC of some tetra-alkylammonium  and 
alkylpyridinium salts  was mathematically related to the molecular structure properties.  

Material and Methods: All critical micelle concentrations data of this investigation 
were obtained from a set of cationic surfactants. They are measured in water at 25 °C. The 
data set consists of 44 surfactants were divided into two groups with 29 tetra-alkyl ammonium 
and 15 alkylpyridinium salts. The 3D molecular structures generated by ChemDraw 2005 and 
optimized by AM1 rotuine of MOPAC. The molecular descriptors generated ChemSAR and 
Dragon ver 3.0 

Results: OLS regression analysis provided useful equations that can be used to predict 
the logCMC of cationic surfactants in this study. Model (I) which was used to estimate the 
logarithm of CMC tetra-alkyl ammonium surfactants using four structural descriptors could 
be represented as: 

  
).(mod,135021009860020

0053009600012301258000971log
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====
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The logCMC of alkylpyridinium surfactants with three descriptors can be effectively 
predicted using following Eq. for model (II). 
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The simultaneous model, which was used to estimate logCMC all cationic surfactants using 
four molecular structure descriptors, could be represented as 
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====
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where n is the number of compounds used for regression, R2 is the squared correlation 
coefficient, s2 is the standard error of the regression, and F is the Fisher ratio for the 
regression. 

Conclusion: The results indicate that the CMC decreases as the hydrophobic character 
(L and V) increases and CMC increases as the hydrophilic character (A) of the surfactant 
increases. 
 
 
Keywords: Cationic surfactants, Critical micelle concentration, Molecular descriptors, QSMR, 
OLS, Prediction. 
 
 
Abbreviations 

CMC, critical micelle concentration; QSPR, Quantitative structure property 
relationship;AM1, Austin model 1, QSMR, Quantitative structure-micellization relationship; 
OLS, ordinary least squares regression; LC, hydrophobic chain length; VH, hydrophobic 
volume; AHP, area of hydrophilic portion; RHCI, radius of hydrated counter ions. 
 
Introduction 

Surfactants are organic molecules that have a chemical structure combining both a 
polar (amphiphobic) and a nonpolar (amphiphilic) group into a single molecule.The value of 
the critical micelle concentration (CMC) is an important parameter in a wide variety of 
industrial applications involving adsorption of surfactant molecules at interfaces, such as 
foams, froths, emulsions, suspensions, and surface coatings. Micellization is observed in 
surfactant solutions when concentration exceeds the CMC, whereas the physicochemical 
properties of the aqueous solution change abruptly. The CMC is affected by factors such as 
relative size of hydrophobic and hydrophilic parts in the molecule, the counter-ions, and 
presence of electrolytes, pH and temperature.[1] The CMC of surfactants has been determined 
using many methods e.g. dye solubilization,[2] polarographic method,[3]flow injection 
systems,[4]turbidimetry,[5]light scattering,[6] 13C NMR techniques,[7]luminescence 
spectroscopy, uv/visible spectroscopy, electrical conductivity, [8] surface tension,[9 ] capillary 
electrophoresis [10] and etc. 

Cationic surfactants are comprised of a long chain hydrocarbon with a positively 
charged polar head group. Most cationic surfactants are long chain amines and their salts, 
quaternary ammonium salts, alkylpyridinium and picolinium compounds, or 
polyoxyethylenated long chain amines. In most cases, the head group is either a quaternary 
ammonium or phosphonium ion-paired with a counter ion such as chloride, bromide, iodide, 
hydroxide, carboxylates and nitrate.[11] Most cationic surfactants have hydrophilic groups, 
which are based on a nitrogen atom carrying the positive charge, few exceptions are based on 
phosphor and sulfur atoms. Most solid surfaces are negatively charged and the surface 
properties can therefore be modified by using cationic surfactants, as they carry a positive 
charge. First, their positive charge allows them to adsorb on negatively charged substrates, as 
most solid surfaces are at neutral pH. This capacity confers to them an antistatic behavior and 
a softening action for fabric and hair rinsing and conditioners. The positive charge enables 
them to operate as floatation collectors, hydrophobating agents, corrosion inhibitors, as well 
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as solid particle dispersant. They are used as emulsifiers in emulsions and coatings in general, 
in inks, wood pulp dispersions, herbicides, germicides, textiles auxiliaries, toiletries, etc. On 
the other hand, many cationic surfactants are bactericides. They are used to clean and asepsis 
surgery hardware, to formulate heavy-duty disinfectants for domestic and hospital use, and to 
sterilize food bottle or containers, particularly in the dairy and beverage industries.[12, 13] 

The quantitative structure-property relationship (QSPR) is a successful strategy for 
prediction of surfactant properties based on modeling between calculated descriptors from 
molecular structures of the surfactants and chemical or physical properties of the solution.[14-

16] There are a great number of molecular descriptors that have been used in such QSPR 
studies, which can be divided into six types, namely constitutional descriptors, topological 
descriptors, electrostatic descriptors, geometrical descriptors, quantum chemical descriptors 
and thermodynamic descriptors.[17-19] There are some reports about the applications of QSPR 
approaches to predict the CMC of anionic,[20-22] nonionic [23-25] and Gemini surfactants.[26, 27] 
In our previous papers, we reported on the application of QSPR techniques in the 
development of a new, simplified approach to prediction of compounds properties.[28-32] 

In the present work, the logCMC of some tetra-alkylammonium  and alkylpyridinium 
salts  was mathematically related to the molecular structure properties.Ordinary Least squares 
(OLS) method was applied in quantitative structure-micellization relationship (QSMR) for 
modeling the relationship between logCMC of 44 cationic surfactants and their structural 
descriptors in aqueous solution.  
 
Materials and Experimental Methods 

The strategy used in this study consisted of six fundamental stages: 
(1) molecular structure input and generation of the files containing the chemical structures 
stored in a computer–readable format, (2) quantum mechanics geometry optimization with a 
semi–empirical (AM1) method, (3) structural descriptors computation, (4) structural 
descriptors selection, (5) structure–logCMC model generation with the ordinary least squares 
regression method, and (6) statistical analysis. 
Data set 
   All critical micelle concentrations data of this investigation were obtained from a set 
of cationic surfactants from references. [33, 34] They are measured in water at 25 °C. The data 
set consists of 44 surfactants were divided into two groups with 29 tetra-alkyl ammonium for 
model (I) and 15 alkylpyridinium salts for the model (II)  and a simultaneous model was 
developed for all 44 cationic surfactants. The data set was split randomly into a training set (a-
I and a-II) and a prediction set (b-I and  b-II). The data set are shown in Table 1. 
 
Table 1-Experimental values of logCMC cationic surfactants for train set (a-I, a-II) and prediction set 

(b-I, b-II). 
No.            Compound                            LogCMC(Exp.)          No.           Compound                        
LogCMC(Exp.) 
1 (C12H25)2N+(CH3)2Br-            (a-I) -3.7545 23
 C14H29N+(CH2Ar)(Me)2Cl-(b-I) -2.6990 
2 C18H37N+(Me)3Br-                 (a-I) -3.5376 24
 C14H29N+(CH3)3NO3

-    (b-I) -2.5686 
3 C16H33N+(CH3)3NO3

-             (a-I) -3.0915 25
 C14H29N+(CH3)3Br-       (b-I) -2.4437 
4 C12H25N+OCT(Me)2Br-         (a-I) -2.9586 26
 C12H25N+Bu(Me)2Br-    (b-I) -2.1249 
5 C16H33N+(CH3)3Cl-                (a-I) -2.8539 27
 C12H25N+(CH3)3Br-       (b-I) -1.7959 
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Tabel 1 countinue 
6 (C10H21)2N+(CH3)2Br-            (a-I) -2.7328 28
 C12H25NH2

+CH2CH2OHCl-(b-I) -1.4559 
7 C14H29N+(nPr)3Br-                 (a-I) -2.6778 29
 C10H21N+(CH3)3Cl-        (b-I) -1.1675 
8 C16H33N+(CH3)3OH-              (a-I) -2.6383 30
 C18H37PY+Cl-               (a-II) -3.6198 
9 C12H25N+Hex(Me)2Br-           (a-I) -2.5086 31
 C16H33PY+Cl-               (a-II) -3.0458 
10 C14H29N+(Et)3Br-                   (a-I) -2.5086 32
 C14H29PY+Br-               (a-II) -2.5686 
11 C14H29N+(CH3)3OH-              (a-I) -2.3468 33
 C14H29PY+Cl-                  (a-II) -2.4559 
12 C14H29N+(CH3)3Cl-                (a-I) -2.3468 34
 C13H27PY+Br-               (a-II)    -2.2757 
13 C12H25N+(CH2Ar)(Me)2Cl-    (a-I) -2.0555 35
 C12H25PY+MeI-            (a-II)  -2.2636 
14 C12H25N+Et(Me)2Br-              (a-I) -1.8539 36
 C12H25PY+Br-               (a-II) -1.9431 
15 C12H25N+(CH3)3Cl-                (a-I) -1.6990 37
 C12H25PY+Cl-               (a-II) -1.7242 
16 C12H25N+(CH2CH2OH)3Cl-     (a-I) -1.6021 38
 C11H23PY+Br-               (a-II)   -1.7100 
17 C10H21N+(CH2Ar)(Me)2Cl-    (a-I) -1.5376 39
 C10H21PY+Cl-               (a-II) -1.0614 
18 C12H25NH+(CH2CH2OH)2Cl- (a-I) -1.4437 40
 C16H33PY+Br-               (b-II) -3.1938 
19 C10H21N+(CH3)3Br-                (a-I) -1.1675 41
 C15H31PY+Br-               (b-II) -2.8861 
20 C8H17N+(CH3)3Br-                 (a-I) -0.7447 42
 C10H21CHMePY+MeI-  (b-II) -2.3799 
21 C16H33N+(CH3)3Br-                (b-I) -3.0088 43
 C6H13C=-C-CPY+MeI-(b-II) -1.8861 
22 C14H29N+(nBu)3Br-                (b-I) -2.9208 44
 C10H21PY+Br-               (b-II) -1.3565 

 
Computer Hardware and Software 

All calculations were run on a Pentium IV personal computer with windows XP 
operating system. The ChemDraw Ultra version 9.0 (ChemOffice 2005, CambridgeSoft 
Corporation) software was used for drawing the molecular structures.[35] The optimizations of 
molecular structures were done by the MOPAC 7.0 (AM1 method) and structural descriptors 
were calculated by Molecular Modeling Pro (MMP) Version 6.0 (ChemSW, Inc.) 
softwares.[36, 37] OLS regression performed by XLSTAT-PLS 1.8 software [38] and other 
calculations have done in the MATLAB (version 7.0, Mathworks, Inc.) environment.  
 Molecular Modeling and Calculation of Descriptors 

The derivation of theoretical molecular descriptors proceeds from the chemical 
structure of the compounds. In order to calculate the theoretical descriptors, molecular 
structures were sketched with ChemDraw Ultra version 9.0 and molecular structures were 
optimized using AM1 algorithm.[39] The computational chemistry software Chem3D Ultra 
version 9.0 using in built MOPAC with 0.1 gradient cutoff was used to build the molecules 
and perform the necessary geometry optimizations. Eleven theoretical descriptors were 
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calculated for each compound in the data sets (44 compounds) by Molecular Modeling Pro 
(MMP) Version 6.0 (ChemSW, Inc.) software. The calculated descriptors were hydrophilic-
lipophilic balance (HLB), hydrophobic volume (VH), area of slice through hydrophilic portion 
(AHP), hydrophobic portion’s longest chain length(LC), V/(A*L), radius of hydrated counter 
ions (RHCI), number of ethylene oxide units, number of propylene oxide unites, %molecular 
weight that is ethylene oxide, %molecular weight that is propylene oxide and surface tension 
of 1% aqueous. 
 Selection of Descriptors  

All descriptors with zero, constant and/or near constant values for all the molecules in 
the data set were eliminated. The correlation matrix was calculated for the descriptors, one of 
the two descriptors which has the pair wise correlation coefficient above 0.7 (r > 0.7) and it 
has a large correlation coefficient with the other descriptors was eliminated.  

The stepwise regression method was used as the variable selection method to select 
the suitable descriptors among eleven theoretical descriptors generated by Molecular 
Modeling Pro Plus software. This method combines the forward and backward procedures. 
Stepwise model-building techniques for regression designs with a single dependent variable 
involve identifying an initial model, repeatedly altering the model from the previous step by 
adding (forward stepwise) or removing (back stepwise) a predictor variable and terminating 
the search when stepping does not further improve the model. The forward stepwise method 
employs a combination of the forward entry of independent variables and backward removal 
of insignificant variables. The best single predictor, which is the most significant variable, 
was used for the initial linear regression step. Next, descriptors were added one at a time, 
always adding the one that most improved the fit, until the fit was not significantly improved. 
Once all the significant variables were determined, the regression equation was constructed. 
The number of variables retained in the model is based on the levels of significance assumed 
for inclusion and exclusion of variables from the model. [40, 41] 

 By using these criteria, seven out of the initial eleven original descriptors were 
eliminated and the remaining descriptors were used to generate the models using the 
XLSTAT-PLS software package. The result shows that four calculated descriptors are the 
most feasible ones. The selected descriptors are hydrophobic portions longest chain length 
(LC), hydrophobic volume (VH), area of slice through hydrophilic portion (AHP) and the radius 
of the hydrated counter ions (RHCI). 
Ordinary Least Squares Regression Modeling  

Regression can be used to describe and interpret the relationship between the X-
variables (predictors) and the y-response, and to predict the y-values of new samples from the 
values of the X-variables. The linear relationship between the descriptors and logCMC of the 
cationic surfactants was modeled using an ordinary least squares regression (OLS) technique. 
[42] In the case of a model with p explanatory variables, the OLS regression model writes                 

εββ ++= ∑
=

j

p

j
j Xy

1
0                    (1) 

where y is the dependent variable, 0β  is the intercept of the model, jβ ’s, are regression 
coefficients, Xj corresponds to the jth explanatory variable of the model (j= 1 to p), and ε  is 
the random error with expectation 0. An ideal model is one that has high squared correlation 
coefficient (R2) and Fisher ratio (F) values, a low standard error (s2), and the fewest 
independent variables.  
 
Results and Discussion    

A number of good models were obtained using the OLS technique. Among these 
models, three models showed higher R2 and F values and lower s2 compared with the others. 
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However, the training set used to develop models (I) and (II) consisted of 20 tetra-
alkylammonium and 10 alkylpyridinium salts, respectively. The specifications for models are 
given in Eqs. 2, 3 and 4. Inspection of the models revealed the superiority of models (I) and 
(II) and simultaneous model, owing to better predictive power. It should be noted that 
simultaneous model was obtained using all tetra-alkylammonium and alkylpyridinium salts 
(30 molecules). On the other hand, the parameters appearing in these models were only for the 
geometric-type descriptors.The geometric descriptors were calculated using the optimized 
Cartesian coordinates and the van der Waals radius of each atom in the molecule. Four 
descriptors appeared in model (I)  as geometric descriptors, i.e., hydrophobic portions longest 
chain length (LC), hydrophobic volume (VH), area of slice through hydrophilic portion (AHP) 
and the size of the counter ions (RHCI) of the molecules. Model (II) consisted of three 
descriptors in common with model (I), with the AHP (area of slice through hydrophilic 
portion) absent from this model. The correlation matrix for logCMC and the calculated 
descriptors are shown in Table 2. Of the four descriptors, LC and VH have the higher negative 
values of correlation coefficients. The lowest correlation coefficients were for the AHP and 
RHCI values.  

Table 2- Correlation matrix for the dependence of logCMC with the descriptors. 
 LogCMC      LC    VH   RHCI    AHP 
LogCMC    1.0000 
LC  -0.8756   1.0000 
VH  -0.8082   0.6087   1.0000 
RHCI    0.1103  -0.0015   0.0000   1.0000 
AHP    0.3036  -0.0255 -0.0685   0.0055   1.0000 
 

OLS analysis 
OLS regression analysis provided useful equations that can be used to predict the 

logCMC of cationic surfactants in this study. The Eq. (2) for model (I) which was used to 
estimate the logarithm of CMC tetra-alkyl ammonium surfactants using four structural 
descriptors could be represented as: 

  
).(mod,135021009860020

0053009600012301258000971log
22 Iel,F.,s.,Rn

R.A.V.L..CMC HCIHGHC

====

++−−−=
        (2) 

The logCMC of alkylpyridinium surfactants with three descriptors can be effectively 
predicted using Eq. (3) for model (II). 

     
).(mod,159,0098.0,9940.0,10),(mod

0249.00011.02461.00291.6log
22 IIelFsRnIIel

RVLCMC HCIHC

====

+−−=
             (3) 

 
The simultaneous model (Eq. (4)), which was used to estimate logCMC all cationic 
surfactants using four molecular structure descriptors, could be represented as 

.mod,173,0228.0,9820.0,30

0063.01214.00101.01529.04055.1log
22 elfinalFsRn

RAVLCMC HCIHGHC

====

++−−−=
        (4) 

 
where n is the number of compounds used for regression, R2 is the squared correlation 
coefficient, s2 is the standard error of the regression, and F is the Fisher ratio for the 
regression. 

The squared correlation coefficient, R2, is a measure of the fit of the regression model. 
Correspondingly, it represents the part of the variation in the experimental data that is 
explained by the model; the higher the value of correlation coefficient, the better the model. 
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The correlation coefficient values closer to 1 represents the better fit of the model. The s2 is 
the standard error measured by the error mean square, which expresses the variation of the 
residuals or the variation about the regression line. Thus, the standard error measures the 
model error. If the model is correct, it is an estimate of the error of the data variance ( 2σ ). 
The F-test reflects the ratio of the variance explained by the model and the variance due to the 
error in the model, and high values of the F-test indicate the model is statistically significant.  

 Positive values in the regression coefficients indicate that the descriptor contributes 
positively to the value of CMC, whereas negative values indicate that the greater the value of 
the descriptor the lower the value of CMC. 

The addition of a fourth descriptor (AHP) to the model (II) was not statistically 
justified, resulting in a very minor improvement of the correlation coefficient and standard 
error and a decrease of the F-test statistic, finally this descriptor was excluded from the 
equation (3). Since the variation in the head group of alkylpyridinium surfactants in this work 
is minimum.  Final model consists of four descriptors in common with model (I) and three 
descriptors in common with model (II).  

The logCMC is assumed highly dependent upon the hydrophobic chain length 
(r2=0.8756) and hydrophobic volume (r2= 0.8086). Figure 1 (a, b) show the excellent 
correlations between the experimental logCMC of the all cationic surfactants with the (a) 
hydrophobic portions longest chain length (LC) and (b) hydrophobic volume (VH). The nature 
of the selected descriptors is in agreement with what is known qualitatively about structural 
effects on CMC. Finding a good correlation with only four descriptors can be considered a 
success 
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Fig 1- Theexperimental logCMC values cationic surfactants correlate well with the (a)    
hydrophobic chain length [LC] and (b) hydrophobic volume [VH]. 
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. 
QSMR models were building using a training set of 20 and 10 samples for model (I) 

and (II), respectively (Table 1(a-I),(a-II)). The stability and validity of models were tested by 
prediction of the response values for the prediction set. These models were applied for the 
prediction of the logCMC of some cationic surfactants, which were not used in the modeling 
procedure.Test sets containing of five alkylpyridinium and nine tetra-alkyl ammonium 
surfactants with regularly distributed logCMC values were used to assess the predictive ability 
of the produced QSMR models. The results of prediction set are shown in Table 3. Clearly, 
the calculated values of CMC are consistent with the experimental values. The scatter plots of 
predicted logCMC vs. experimental logCMC with high square correlation coefficients and the 
residuals versus experimental logCMC for above models are presented in figures 2, 3 and 4. 
Random distribution of residuals about zero mean indicated that no systematic error exists in 
the development of the OLS models.The average relative errors ( %RE ) of prediction are 
0.4127%, 0.3234% and 2.1124% for model (I), model (II) and simultaneous model, 
respectively. However, the appearance of fewer descriptors (four parameters) in simultaneous 
model and its statistics illustrates that this equation (4) can be selected as a good model for 
predicting the logCMC of all tetra-alkylammonium and alkylpyridinium salts.  
 
Table 3- Comparison between experimental and calculated logCMC values for external prediction set. 

 
                                                                   LogCMC(Exp.)                                        
LogCMC(Pred.) 
No. Compound                                                                      Model (I) Model 
(II)     simultaneous Model 
1 C16H33N+(CH3)3Br-                   (b-I) -3.0088  -2.9667
 -3.0723 
2 C14H29N+(nBu)3Br-                    (b-I) -2.9208  -3.0188
 -2.9933 
3 C14H29N+(CH2Ar)(Me)2Cl-        (b-I) -2.6990  -2.5599
 -2.5832 
4 C14H29N+(CH3)3NO3

-                (b-I) -2.5686  -2.4828
 -2.5746 
5 C14H29N+(CH3)3Br-                   (b-I) -2.4437  -2.4409
 -2.5206 
6 C12H25N+Bu(Me)2Br-                (b-I) -2.1249  -2.0757
 -2.0809 
7 C12H25N+(CH3)3Br-                   (b-I) -1.7959  -1.8214
 -1.8639 
8 C12H25NH2

+CH2CH2OHCl-      (b-I) -1.4559  -1.4347
 -1.4533 
9 C10H21N+(CH3)3Cl-                   (b-I) -1.1675  -1.1986
 -1.1984 
10 C16H33PY+Br-                           (b-II) -3.1938 -3.1559  - 
         3.0221 
11 C15H31PY+Br-                           (b-II) -2.8861 -2.8270  - 
          2.7202 
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Tabel 3 countinue 

12 C10H21CHMePY+MeI-             (b-II) -2.3799 -2.3946  -
2.3307 
13 C6H13C=-C-CPY+MeI-            (b-II) -1.8861 -1.8469  -
1.8535 
14 C10H21PY+Br-                          (b-II) -1.3565 -1.5000  -
1.5192 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2- Plots of predicted logCMC and residuals logCMC versus experimental logCMC using 
model (I) for tetra-alkyl ammonium surfactants 
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Fig 3- Plots of predicted logCMC and residuals logCMC versus experimental logCMC using 
model (II) for alkylpyridinium surfactants 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 4- Plots of predicted logCMC and residuals logCMC versus experimental logCMC using 

simultaneous model for test set of cationic surfactants 
 
Root mean square errors of prediction (RMSEP) values were then calculated for the 

prediction sets, and the results of RMSEP are 0.0688, 0.0738 and 0.0938 for model (I), model 
(II) and simultaneous model, respectively. 
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Interpretation of descriptors 

The QSMR models developed indicated that hydrophobic portions longest chain 
length (LC), hydrophobic volume (VH), area of slice through hydrophilic portion (AHP) and the 
size of the hydrated counter ions (RHCI) of the molecules significantly influence cationic 
surfactants micellization. Micelle formation of a surfactant in solution is induced by the 
hydrophobic interaction between hydrocarbon parts of the surfactant molecules balanced by 
their hydration and electrostatic repulsive effects. In aqueous media, the CMC of ionic 
surfactants is much higher than nonionic surfactants containing a similar hydrophobic tail. In 
general, the CMC decreases as the hydrophobic character of the surfactant increases, i.e. as 
the number of carbon atoms in the hydrophobic tail increases. A common rule is that for ionic 
surfactants the CMC is halved by the addition of one methylene group to a straight-chain 
hydrophobic group attached to a single terminal hydrophilic group. The presence of polar 
groups in the hydrophobic tail causes a significant increase in the CMC. The replacement of a 
hydrogen group by an ionic group also significantly increases the CMC. As seen in Eqs. 2, 3 
and 4, hydrophobic portions longest chain length and hydrophobic volume descriptors 
appearing in models had negative coefficients. This means that as these parameters increase, 
the CMC of the cationic surfactants decrease. This is in agreement with the experimental 
values showing that the CMC of cationic surfactants decreases as the hydrophobicity of the 
molecule increases. Comparison of the mean effects of the descriptors appearing in models 
shows that the hydrophobic portions longest chain length had the largest effect on the 
micellization of cationic surfactants. These models show that as the LC and VH increases, the 
logCMC decreases. Inspection of models also indicates that for all molecules the lengths of 
the tails of the molecules plays an important role in micellization. This is also in agreement 
with the experimental values showing that, for all types of surfactants, as the length of a side 
chain increases, the CMC decreases.  Increase in the length and volume of the hydrophobic 
group decreases the solubility of the surfactant in water and increases its solubility in organic 
solvents.  

From geometric considerations, the aggregation numbers of micelles in aqueous media 
should increase rapidly with increase in the length of the hydrophobic group (LC) of the 
surfactant molecule and decrease with increase in the area of the hydrophilic group (AHP). 
Surfactants with bulky hydrophilic groups have larger CMC values. When the hydrophilic 
group is moved from a terminal position to a more central position, the CMC increases. It has 
been found that the CMC is higher when the charge on an ionic hydrophilic group is closer to 
the α-carbon atom of the (alkyl) hydrophobic group. This is explained as being due to an 
increase in electrostatic self-potential of the surfactant ion when the ionic head group moves 
from the bulk water to the vicinity of the nonpolar micellar core during the process of 
micellization; work is required to move an electric charge closer to a medium of lower 
dielectric constant. The area of slice through hydrophilic portion shows a positive coefficient 
in model (I) and simultaneous model. This means that as this parameter increases, the CMC 
of the cationic surfactant increases.  

The effect of electrolyte on the CMC in aqueous media is very pronounced for ionic 
surfactants, and less so for zwitterionics and nonionics.The reduction in CMC is due mainly 
to the decrease in electrical repulsion between the ionic head-groups. The CMC in an aqueous 
solution is influenced by the degree of binding of counter ion to the micelle. For aqueous 
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systems, the increased binding of the counter ions to surfactant causes a decrease in the CMC 
and an increase in the aggregation number. The extent of binding of the counter ion increases 
with an increase in the polarizability and valence of counter ions and decrease with an 
increase in its hydrated radius. [43, 44] 

The logCMC increases with the increase the hydrated radius of counter ions (decrease 
in the binding of the counter ions to the micelle) and the increase in the size of the hydrophilic 
group in cationic surfactants. The addition of neutral electrolyte to solutions of ionic 
surfactants in aqueous solution causes an increase in the aggregation number, presumably 
because of compression of the electrical double layer surrounding the ionic heads. The 
resulting reduction of their mutual repulsion in the micelle permits closer packing of the head 
groups (AHP is reduced), with a consequent increase in aggregation number. For similar 
cationic surfactants with different counter ions, the CMC increases with increases the size of 
the hydrated counter ions. Increased binding of the less hydrated counter ion, in aqueous 
systems, causes a decrease in the CMC of the surfactant. The extent of binding of the counter 
ion decreases with increase in its hydrated radius. The larger the hydrated radius of the 
counter ion, the weaker the degree of binding on surface micelle. In a number of series of 
cationic surfactants, has shown that the degree of binding is related to the surface area per 
head group, in the ionic micelle, with the degree of binding increasing as the surface area per 
head group decreases. The CMC in aqueous solution reflects the degree of binding of the 
counter ion to the micelle.The increase in binding strength of the counter ion on surface of 
micelle in aqueous systems causes a decrease in the CMC of the surfactant. On the other 
hand, when comparing surfactants of different structural types, the value of the CMC does not 
always decrease with increase in the degree of binding of the counter ion.  The decrease in the 
CMC is due mainly to the increased hydrophobicity of the surfactant. Within a group of ions 
of similar charge, those ions with a smaller hydrated radius or those that are more polarizable 
bind more strongly. Again, ions of higher charge and smaller hydrated radius bind more 
strongly than ions with a lower charge and a larger hydrated radius.  

In this respect, inspection of equation 4, especially for all molecules, reveals the 
agreement between the results obtained and the experimental values. Therefore, the geometric 
descriptors and the types of counter ions in the molecules play a major role in micelle 
formation of the cationic surfactants salts. The delicate balance of opposing forces forms the 
micelles: the attractive tail–tail hydrophobic interaction provides the driving force for the 
aggregation of the surfactant molecules, while the electrostatic repulsion between the cationic 
head groups limits the size that a micelle can attain. The properties of ionic surfactants depend 
on the nature of counter ions, as their association at the micellar surface compensates 
electrostatic repulsion between the charged heads, thus stabilizing the micellar phase.  
From the models presented in this work, one may conclude that the development of linear 
equations between log CMC and molecular descriptors might be of some help in designing 
new surfactants, with emphasis on geometric parameters for both the tetra-alkylammonium 
and alkylpyridinium salts. The results showed that the predicted values from this technique 
are close to the true values. High correlation coefficients for OLS, and low prediction errors 
demonstrated the ability of the selected structural descriptors for quantitative characterization 
of CMC of cationic surfactants.  As a result, the small changes in chemical structure of the 
surfactant molecule easily control the characteristics of these aggregates. Quantitative studies 
offer two major advantages. One of them is that it provides a way for estimating the property 
for novel compounds with a fast and an acceptable degree of precision. The other is that it 
makes structural interpretations of the physicochemical property possible.  
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Conclusions  
OLS modeling method was used to QSMR study of the CMC of cationic surfactants 

using structural descriptors. The results showed that the predicted values from this technique 
are close to the true values. High correlation coefficients for OLS, and low prediction errors 
demonstrated the ability of the selected structural descriptors for quantitative characterization 
of CMC of cationic surfactants. Qualitatively it is well known that contributions from both the 
size of the hydrophobic domain (tail) (L and V), the size of the hydrophilic domain (head) (A) 
and the counter ion nature (charge and size)(CI) of the surfactant influence the CMC values. 
The two contributions are contrary, with a lower CMC for a larger length and volume of 
hydrophobic domain and a higher CMC for a bigger surface area of hydrophilic fragment 
(size of hydrophilic fragment). The results indicate that the CMC decreases as the 
hydrophobic character (L and V) increases and CMC increases as the hydrophilic character 
(A) of the surfactant increases. The delicate balance of opposing forces forms the micelles: 
the attractive tail–tail hydrophobic interaction provides the driving force for the aggregation 
of the surfactant molecules, while the electrostatic repulsion between the cationic head groups 
limits the size that a micelle can attain. The properties of ionic surfactants depend on the 
nature of counter ions, as their association at the micellar surface compensates electrostatic 
repulsion between the charged heads, thus stabilizing the micellar phase. In this study with 
increasing the size of counter ion, as less extent CMC decreases. As a result, the small 
changes in chemical structure of the surfactant molecule easily control the characteristics of 
these aggregates. 
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