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Abstract
          Introduction: Semiconductor nanostructures have attracted much attention due to its 
application in the development of optoelectronic devices. In these structures the electron 
spectrum comprises a set of discrete levels. On the other hand, donor impurity in quantum 
dots can alter the properties of a quantum devices.  

Aim: Study of the effect of external electric field on the  impurity binding energy in a 
spherical quantum dot. 

Materials and Method: The energy levels are investigated using variational method 
within the effective mass approximation and finite barrier potential.
          Results: The energy of impurity and binding energy are calculated in terms of  radius  
of quantum dot. The binding energy is reduced with increases the radius of dot. The ground 
state energy of electron, impurity energy, and normalized binding energy  versus electric field 
for different dot radii in finite quantum dot are also calculated.   

Conclusion: The results show the energies decrease with increases the strength of 
electric field. 
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Introduction
     The study of semiconductor quantum dots  and nanocrystals have been of a great interest 
from the experimental and theoretical point of view in recent years.[1] The origin of the 
interest lies in the size of quantization in solids and in those objects. The electron spectrum of 
an ideal quantum dot comprises a set of discrete levels. This makes the semiconductor 
quantum dot very important in the applications of optical and transport properties of 
semiconductors. The physical properties of the controlling quantum dot is attractive not only 
from the fundamental scientific point of view, but also because of its potential application in 
the development of semiconductor optoelectronic devices. [2]

     Impurities in semiconductors can affect the electrical, optical, and transport properties. 
Understanding the nature of impurity states in semiconductor structures is a crucial  
problem. With characteristic dimensions comparable to the de Broglie wavelength of electron, 
these structures are particularly sensitive to atomic scale variations in geometry. Thus, 
impurity can dramatically alter the properties of a quantum device.[3] In order to understand 
how a hydrogenic donor impurity affects the spectrum of a single electron in low-dimensional 
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semiconductor structures, many researchers focused their attention on energy quantized states 
of the charged carriers. The study of the impurity states in semiconductor nanostructures was 
initiated only in the pioneering works of Bastard. [4] In spite of the growing interest in the 
topic of impurity doping in nanocrystallites, most of the theoretical works carried out on 
shallow donors in spherical quantum dots employ variational approaches,[5] or alternatively, 
perturbation methods limited to the strong confinement regime[6,7], while exact solution has 
been obtained only for centered impurities.[8,9] Bose et al. obtained the binding energy of a 
shallow hydrogenic impurity in a spherical quantum dot with a parabolic potential shape[10]

and square-well barriers,[6,7] respectively. Additionally, a computational scheme yielding 
exact (numerical) wave functions and energies of a spherical nanocrystallite, with a shallow 
donor impurity located anywhere inside, is presented by Movilla and Planelles.[11] For 
simplicity and to protect the symmetric situation the impurity can be located at the center of 
the dot. An electron bounded to an impurity located at the center of quantum dot behaves like 
a bounded three-dimensional electron when the radius of the dot is very large. [12] However, as 
the dot radius is reduced, spatial confinement becomes very important. 

On the other hand, the effect of the external electric field on the binding energy  and 
wave functions play a significant role in the quantum dots. In a study conducted by Dane et 
al.[13], the binding energy of impurity under uniform electric field in the infinite quantum dot 
has been calculated. In the present work, the Schrodinger equation in finite spherical quantum 
dot is analytically solved, and the ground state energy and wave function are calculated by 
applying the boundary conditions at the interfaces, then using  the  variational method, the 
impurity binding energy in spherical quantum dot under a constant uniform  electric field with 
finite confining potential is calculated. 

Materials and Method
Experimental
  In the absence of any impurity, within the effective mass approximation, the 
Hamiltonian is given by: 
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where *m is the effective mass of the electron at the conduction band minimum. The confining 
potential )(rV  is given by: 
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where 0V  is the barrier height given by )(0 xEQV gc ��  and  cQ  is the conduction band off-
set parameter. The eigenfunction for the lowest lying state within the dot is: 
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where 1N  and 2N are normalization constants and �  and �  are given by: 
2

0
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Matching the wave function and their derivatives at the boundary Rr � , we get: 
ReRNN �� )sin(12 �                                                                                                                 (4) 

and,
0)tan( �� RRR ���                                                                                                             (5) 
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Solving this transcendental equation, Eq.(5), the confined particle energies, 0E , are obtained. 
The  Hamiltonian for a shallow impurity located at the center of a spherical quantum dot of a 
radius R , in the presence of electric field can be written as: 
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where e,�  and r� are dielectric constant, electron charge and the position vector, respectively. 
The external uniform electric field F

�
 is applied in �z direction. Using the effective Rydberg 

constant 224** 2/ ��emR �  as the unit of the energy and the effective Bohr radius 
2*2* / ema ���  as the unit of the length, Eq. (6) becomes: 
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where ** / RFea��  is the dimensionless measure of the electric field. The impurity energy in 
the presence of electric field is calculated by a traditional variational method, due to no exact 
solutions to the impurity states in quantum dot. The following trial wave function is adopted 
for ground impurity state in spherical quantum dot: 
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where 21, AA , � , and �   are the normalization constants and the variational parameters to be 
determined. The energy IFE  is obtained by 
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The influence of the electric field on  energy levels of electron in spherical quantum dot is 
determined by  
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where the Hamiltonian and trial wave function are given as  
)(cos2 rVrH F ����� ��                                                                               (11) 

and
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To better understand of behaviour of binding energy, normalized binding energy, bFNE , that 
is defined as the ratio of the  binding energy to the ground energy of spherical quantum dot 
without impurity, is also calculated. 
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Results and discussion
The normalized binding energy and electric field-dependent binding energy, 

IFFbF EEE �� , are calculated for AlAsGaAs /  spherical  quantum dot as a function of the 
electric field strength and the radius of dot. 
The material parameters used in the calculations are[13,14]: 0

* 067.0 mm � , 1.13�� , and the 
barrier potential meVV 2800 � . The effective Rydberg constant is meVR 31.5* � , and the 
effective Bohr radius is 

�

Aa 43.103* � .
The calculated binding energies   versus the radius of quantum dot are shown in Fig.1. 

According to this figure, the energy of impurity ( IFE ), and binding energy are higher for 
smaller R  and decrease as the radius increases. It is interesting to note that the impurity 
energy becomes negative when the dot radius is larger than *720.1 a . This value of the dot 
radius at which the impurity energy changes from positive to negative is known as turning 
point. The calculated value by Dane et al. [13] for the turning point is *852.1 a . The difference 
is due to the finite barrier potential. As could be seen, the impurity energy approaches to 

*R� as the radius become larger than *4a . The binding energy is reduced with increase the 
radius of dot, this is because the probability of finding an electron in the central region of the 
dot decreases, as the dot radius increases. The normalized binding energy increases with 
radius, and it is equal to *1R  for the turning point. For the sake of comparison, the numerical 
results of Dane et al. [13] are also shown in these figures, dotted curves. As it is seen, the 
difference between the two results decrease as the radius of dot increases. 

Figure 1- The ground state energy FE , the impurity energy IFE , the binding energy bFE , and the 
normalized binding energy bFNE versus the radius of the finite AlAsGaAs / quantum dot. 

To investigate the effect of an electric field on the energy levels , the ground state energy of 
electron versus F  for different dot radii in finite quantum dot is shown in Fig.2. It can be 
seen that the energy levels FE  of electron depend on both the electric field strength F  and 
radius of dot, such that for a given value of radius, the energy of electron decreases as F
increase. For comparison the numerical analysis by Dane et al. [13] for infinite barrier potential 
is also presented , dotted curve. It is also interesting to note that the difference increases with 

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

J. Sci. I. A. U (JSIAU), Vol 20, No. 75, Spring 2010                                                                                         126                             
  

  

strength of electric field. The reduction of the energy with respect to infinite barrier potential 
is due to the penetration of wave functions into the barrier region. 

Figure 3 shows the impurity energy as a function of the electric field strength for 
different dot radii. As could be seen , the impurity energy drop as electric field or the size of 
quantum dot increases. In the presence of the electric field, the charge distribution  is 
concentrated near the interface of the quantum dot, and therefore the value of IFE  increases.

Figure 2- Energy levels ( FE )   calculated for electron in terms of the electric field strengths for 
different dot radii. 

Figure 3- The impurity energy IFE  as a function of the electric field strengths 

The normalized binding energies in terms of F  in a finite quantum dot are shown in 
Fig.4. Based on this figure, bFNE  increases and takes infinity for a given value of electric 
field .0F 0F  is the electric field strength for which the ground state energy ( FE ) in the 
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presence of electric field has its zero value. According Fig.2, the value of 0F  increases with 
decreases the radius of dot. For 0FF �  )( 0FF 
  the normalized binding energies are 
positive (negative), and in the near of the 0F  are infinity. 

Figure 4-The normalized binding energy bFNE  versus electric field strengths in finite AlAsGaAs /
spherical quantum dots 

Conclusion
In the present study, the impurity energy and normalized binding energy  in the 

spherical quantum dot in finite barrier potential in terms of strength of electric field are 
calculated. The results clearly show the effect of confining potential and F  on the energy. 
The calculated energies for the finite confining potential case are compare with numerical 
results.[13]
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