Moment Inequalities and Applications for Negative Dependence Random Variables Archive of SID

F.Rivaz*, M.Amini** and A.Bozorgnia***

* Department of Statistics, Tarbiat Modaress University

** Department of Mathematics, Sistan and Baluchestan University

*** Department of Statistics, Ferdowsi University

Abstract

In this paper, we extend some moment inequalities for partial sums of negative dependence (ND) random variables. Based on these inequalities, some useful inequalities are obtained.

www.SID.ir

Key Words: Negative Dependence, Moment Inequalities.

1.Introduction and preliminaries

Archive of SID Let $\{X_n, n \geq 1\}$ be a sequence of random variables defined on the probability space (Ω, \mathcal{F}, p) . The moment inequalities and their applications for independent random variables have been studied by Petrov (1995). Shao (2000) and Su (1997) studied moment inequalities for NA random variables. In this paper, we extend these inequalities for ND random variables. To prove our main results we need the following definition, lemmas and theorems.

Definition 1. The random variables X_1, \dots, X_n are said to be ND if we have

$$P[\bigcap_{j=1}^{n} (X_j \le x_j)] \le \prod_{j=1}^{n} P[X_j \le x_j],$$
 (1)

and

$$P[\bigcap_{j=1}^{n} (X_j > x_j)] \le \prod_{j=1}^{n} P[X_j > x_j], \quad (2)$$

for all $x_1, \dots, x_n \in R$. An infinite sequence $\{X_n, n \geq 1\}$ is said to be ND if every finite subset X_1, \dots, X_n is ND. The conditions (1) and (2) are equivalent for n = 2, but these do not agree for $n \geq 3$ (see [2])

Lemma 1.([1]) Let X_1, \dots, X_n be ND random variables and f_1, \dots, f_n be a sequence of Borel functions which all are monotone increasing (or all are monotone decreasing), then $f_1(X_1), \dots, f_n(X_n)$ are ND random variables.

Lemmas 2.([1]) Let X_1, \dots, X_n be ND nonnegative random variables.

Then

$$E[\prod_{j=1}^{n} X_j] \le \prod_{j=1}^{n} E[X_j].$$

Corollary 1. Let X_1, X_2, \dots, X_n be ND random variables, then for every real t we have

$$Ee^{tS_n} \le \prod_{i=1}^n Ee^{tX_i}.$$

Lemmas 3.([3]) If X be an arbitrary random variable and p > 0. Then

$$E|X|^p = p \int_0^\infty x^{p-1} P[|X| \ge x] dx.$$

Lemmas 4.([3]) Let $\{X_n, n \ge 1\}$ be a sequence of random variables with $E|X|^p \le \infty$ for some $p \ge 1$ and $S_n = \sum_{i=1}^n X_i$. Then

$$E|S_n|^p \le n^{p-1}M_{p,n},$$

where $M_{p,n} = \sum_{j=1}^{n} E|X_j|^p$.

Theorem 1.([3]) Let X be a random variable and $\beta_r = E|X|^r$ for any 0 < r < s. Then

$$\beta_r^{\frac{1}{r}} \le \gamma^{\frac{1}{r} - \frac{1}{s}}.\beta_s^{\frac{1}{s}},$$

where $\gamma = P[X \neq 0]$.

ii)

Lemmas 5.([3])If Y is a random variable with d.f. $\frac{1}{n} \sum_{k=1}^{n} P[X_k \leq x]$. Then for any r > 0,

$$E|Y|^r = \frac{1}{n} \sum_{k=1}^n E|X_k|^r$$

 $P[Y \neq 0] = \frac{1}{n} \sum_{k=1}^{WW.W.SID.ir} P[X_k \neq 0].$

Corollary 2. Applying Theorem 1 to Y with p = 2 and $p = p \ge 2$, we conclude that

$$B_n^{\frac{1}{2}} \le \left[\sum_{k=1}^n P[X_k \ne 0]\right]^{\frac{1}{2} - \frac{1}{p}} M_{p,n}^{\frac{1}{p}}.$$

where $B_n = \sum_{j=1}^n EX_j^2$.

2. The Main Results

In this section, first we extend an inequality for ND r.v.,s that Petrov [3] proved for independent r.v.'s and Su (1997) proved for NA r.v.'s. Then by using this inequality, we obtain some moment inequalities for ND random variables.

Theorem 2. Let X_1, X_2, \dots, X_n be ND random variables with $E(X_i) = 0$, $EX_i^p < \infty$, $i = 1, 2, \dots, n$ and $p \ge 2$. Then for any t > p/2 and x > 0,

$$P[|S_n| \ge x] \le \sum_{j=1}^n P[|X_j| \ge \frac{x}{t}] + 2e^t [1 + \frac{x^2}{tB_n}]^{-t}$$
(3)

Proof. Since proof is similar to Lemma 2.3 (Ref.[3]) and Theorem 1 (Ref.[5]), thus we omit details. We define $Y_j = \min(X_j, y)$, y > 0 and $T_n = \sum_{j=1}^n Y_j$. It is clear that for every real x that x > y,

$$[S_n \ge x] \subseteq [T_n \ge x] \cup [T_n \ne S_n].$$

Hence for every h > 0 and by Markov's inequality

$$P[S_n \ge x] \le P[T_n \ge x] + P[T_n \ne S_n] \text{ by }$$

$$\le e^{-hx} E e^{hT_n} \text{ her }$$

$$+ \sum_{j=1}^n P[X_j \ge y]. \quad (4)$$

Let $F_j(x) = P[X_j \le x]$ for all real x and j = 1, 2, ..., n. Since $Y_j \le X_j$ and $EY_j \le EX_j = 0$. Thus for every h > 0,

$$Ee^{hY_j} \leq 1 + \int_{\infty}^{y} (e^{hx} - 1 - hx) dF_j(x) + (e^{hy} - 1 - hy) P[X_j \geq y].$$
 (5)

Since the function $g(x) = \frac{e^{hx} - 1 - hx}{x^2}$, for every h > 0 is non-decreasing, hence by (5) obtain

$$\begin{split} Ee^{hY_j} & \leq 1 + \frac{e^{hy} - 1 - hy}{y^2} EX_j^2 \\ & \leq \exp[\frac{e^{hy - 1 - hy}}{y^2} EX_j^2]. \end{split}$$

By Lemma 1, the random variables $Y_1, Y_2,, Y_n$ are ND because the random variables X_1, X_2, X_n are ND. Therefore,

$$e^{-hx}Ee^{hT_n} \le e^{-hx} \prod_{j=1}^n Ee^{hY_j}$$

 $\le \exp[-hx + \frac{e^{hy} - 1 - hy}{u^2} B_n].$ (6)

We put here $h = \frac{1}{y} \ln(\frac{xy}{B_n} + 1)$, then

$$e^{-hx}Ee^{hT_n} \le \exp\left[-\frac{x}{y}\ln\left(\frac{xy}{B_n} + 1\right)\right]$$
$$+\frac{x}{y} - \frac{B_n}{y^2}\ln\left(\frac{xy}{B_n} + 1\right)\right]$$
$$\le \exp\left[\frac{x}{y} - \frac{x}{y}\ln\left(\frac{xy}{B_n} + 1\right)\right].$$

Note that an analogous estimate holds for $P[-S_n \ge x]$, with replacement of $Z_j = \min(-X_j, y)$ and $T'_n = \sum_{j=1}^n Z_j$ by $Y_j = \min(X_j, y)$ and $T_n = \sum_{j=1}^n Y_j$. Since by Lemma 1 $Z_1, Z_2, ...Z_n$ are ND, hence for every x > 0 and $h \ge 0$ ID. ir

$$P[|S_n| \ge x] \le P[S_n \ge x]$$

$$+ P[-S_n \ge x] \le P[T_n \ge x]$$
Archiperoff SLD

$$+ P[T'_n \ge x] + P[T'_n \ne -S_n]$$

$$\leq \sum_{j=1}^{n} P[|X_j| \geq y] + e^{-hx} (Ee^{hT_n} + Ee^{hT'_n})$$

$$\leq \sum_{i=1}^{n} P[|X_j| \geq y]$$

$$+ 2\exp\left[\frac{x}{y} - \frac{x}{y}\ln(\frac{xy}{B_n} + 1)\right],$$

Let $t = \frac{x}{y} > p/2$, we have

$$P[|S_n| \ge x] \le \sum_{j=1}^n P[|X_j|]$$

 $\ge \frac{x}{t}] + 2e^t [1 + \frac{x^2}{tB_n}]^{-t}$

Hence complete the proof.

Corollary 3. Under the assumptions of Theorem 2 we have

i) (a)
$$E|S_n|^p \le A_p(M_{p,n} + B_n^{p/2}), \qquad (7)$$

$$E|S_n|^p \le 2A_p n^{p/2-1} M_{p,n}.$$
 (8)

Where $A_p > 0$ depends only on p.

ii)

By Lemma 2 and (3) for every x > 0and $p \geq 2$, we have

$$E|S_n|^p = p \int_0^\infty x^{p-1} P[|S_n| \ge x$$

$$\le p \sum_{j=1}^n \int_0^\infty x^{p-1} P[|X_j|]$$

$$\begin{array}{lll}
+ & P[-S_n \geq x] \leq P[T_n \geq x] & \geq & x/t]dx \\
+ & P[T_n \neq S_n] & + & 2pe^t \int_0^\infty x^{p-1} [1 + \frac{x^2}{tB_n}]^{-t} dx \\
+ & P[T_n' \geq x] + P[T_n' \neq -S_n] & = & t^p M_{p,n} \\
+ & P[X_j \geq y] + e^{-hx} (Ee^{hT_n}) & + & pe^t t^{p/2} \beta(p/2, t - p/2) B_n^{p/2} \\
+ & P[T_n' \geq x] + e^{hT_n'} & \leq & A_p(M_{p,n} + B_n^{p/2}),
\end{array}$$

 $A_p = \max(p^p, p^{1+p/2}e^p\beta(p/2, p/2))$ for t = p.

By Lemma 4 and Jensen's inequality for every $p \geq 2$, we have

$$E|S_n|^p \leq A_p(M_{p,n} + E(\sum_{j=1}^n X_j^2)^{p/2}))$$

$$\leq A_p(1 + n^{p/2-1})M_{p,n}$$

$$\leq 2A_p n^{p/2-1}M_{p,n}.$$

Corollary 4. Under the assumptions of Theorem 2,

$$E|S_n|^p \le A_p[1] + (\sum_{j=1}^n P[X_j \ne 0])^{p/2-1} M_{p,n}.$$
 (9)

Proof. By Corollaries 2 and 3 we have

$$E|S_n|^p \le A_p(M_{p,n} + B_n^{p/2})$$

$$\le A_p[1 + (\sum_{j=1}^n P[X_j \ne 0])^{p/2-1}]M_{p,n}$$

This complete the proof.

Remark 2. If the sum $\sum_{i=1}^{n} P[X_i \neq 0]$ grows slower than n, particular, if $\sum_{j=1}^{n} P[X_j \neq 0] = O(n^{\alpha}), \quad 0 < \alpha < 1,$ $E|S_n|^p = p \int_0^\infty x^{p-1} P[|S_n| \ge x] dx$ then (6) gives a better estimate than (5) does. www.SID.ir

Theorem 3. Let X_1, X_2, \dots, X_n are

ND random variables and
$$EX_k = 0$$
 for $k = 1, 2, \dots, n$. Then for every $p > 1$, Archive of SID
$$E|S_n|^p \le A_p(M_{p,n} + D_p^p), \quad (10)$$

Where $D_n = \sum_{j=1}^n E|X_j|$ and A_p is a positive constant depending only on p.

Proof Since $g(x) = \frac{e^{hx} - hx - 1}{x}$ for any h > 0 is a nondecreasing function; hence, by applying it in proof of Theorem 2 and $EX_j \leq E|X_j|$ for $h = \frac{1}{y}\ln(1+\frac{y}{D_n}) > 0$, we obtain

$$P[|S_n| \ge x] \le \sum_{j=1}^n P[|X_j| \ge \frac{x}{t}] + 2e[1 + \frac{x}{tD_n}]^{-t},$$
 (11)

where $t = \frac{x}{y} > p > 1$, and x > 0. Now by using (11) we have

$$E|S_{n}|^{p} \leq t^{p}M_{p,n}$$

$$+ 2pe \int_{0}^{\infty} x^{p-1} (1 + \frac{x}{tD_{n}})^{-t} dx$$

$$= t^{p}M_{p,n}$$

$$+ 2pt^{p}D_{n}^{p}e \int_{0}^{\infty} u^{p-1} (1 + u)^{-t} du$$

$$= t^{p}M_{p,n} + 2pt^{p}D_{n}^{p}e^{t}\beta(p, t - p),$$

by putting t = 2p and $A_p = \max((2p)^p$, $(2p)^{p+1}e^{2p}\beta(p,p)$, hence complete the proof.

Theorem 4. Let X_1, X_2, \dots, X_n are ND random variables with $EX_k = 0$ for $k = 1, 2, \dots, n$. Then for every p > 1,

$$E|S_n|^p \le A_p[1+(\sum_{j=1}^n P[X_j \ne 0])^{p-1}]M_{p,n}.$$

Proof By Theorem 1 for r = 1 and s = p > 1, we have

$$D_n \le \left[\sum_{j=1}^n P[X_j \ne 0]\right]^{1-1/p} M_{p,n}^{1/p},$$

now Theorem 3 for every p > 1, complete the proof.

Acknowledgments

The authors are very grateful to the referees for the suggestions which allowed us to improve this paper.

5. References

- [1] Bozorgnia, A., Patterson, R.F and Taylor, R.L. (1996) Limit theorems for dependent random variables: World Congress Nonlinear Analysts' 92. P.1639-1650.
- [2] Ebrahimi, N and Ghosh, M. (1981) Multivariate negative dependence. Comm. Statist., A10 (4), 307-337.
- [3] Petrov, V.V. (1995). Limit theorems of probability theory sequences of independent random variables. Clarendon Press. Oxford.
- [4] Shao, Q.M. (2000). A compairsion theorem on moment inequalities between negatively associated and independent random variables. Journal of Theor. Probab., 13, 343-353.
- [5] Su, C., Zhao, L.C. and Wang, Y.B. (1997). Moment inequalities and week convergence for NA sequences. (ser A) Sci. in China, 40, 172-182.

www.SID.ir