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Abstract

We consider a mixed boundary value problem for a quarter-plane with a Robin
condition on one edge. We have developed two procedures, one based on the
advanced theory of dual integral equationsand the other, in our opinion simpler
technique, relying on conformal mapping. Both of the procedures are of interest,
because the former may be easier to adapt to other boundary value problems.
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Introduction

Problem. Find the solution /of the following mixed
boundary value problem.
PDE:AD =0, x>0,y>0.
B.C. 1) @(0.y) +h(y) ®0.y)=q(y), y>0.

2) Dy(x,0) = f(x), 0<x<l.

3) d(x,0) =0, x> 1.

Note. Our strategy is to create a sequence of tractable
boundary value problems leading to standard integral
equations which may be solved numerically.

Solution. We first find the solution to our auxiliary
problem by replacing the Robin condition by @,(0,y) =
6(y), where 6(y) is an admissible boundary function.

Let ®(x,y) be the desired function, then ®(x,y)
has the following integral representation:

(x, ) = [ A& exp(-x&)sin(yE)dé
‘ (1.1)
+ [ BE) exp(-y&)cos(xé)de
0

Let

aiq) 0y) =~ IéA(é) sin(yg)ds = 0(y) . (1.2)
* 0
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From Fourier’s inversion-formula for the sine
transform
27 .
EA(E) = ——j 0(s)sin(s&)ds . (13)
o
From (1.3) we obtain the following equation:
sO(s
j EA(E) exp(-xE)dE = ——j S (14)

The conditions on y = 0 lead us to the pair of dual
integral equations

[t exp(-x&)ae
0

, 0<x<l1,

(1.5)
- [ B(&)cosxé)as = £(x)

0

I B(&)cos(x&)dE =0, x>1, (1:6)
0

The equation (1.6) is satisfied by [1,3,4]:

1

BE) == [1e(, (o).

0

where g (t) is determined. to satisfy (1.5). Thus (1.5)
may be rewritten as

d 7 .
—ElB(@ sin(x&)dé

, 0<x<1.

(1.7)
ROW

J‘S +x

=/(x)

Following Sneddon’s elementary solution [4], we
have
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(s)ds
Vs? +x2

(1.8)

2(t) = _-([ \/j;ix)dx J-

(0, ) = [ 4@ sin(y£)d - [ BE) exp(-r£)dé , (19)
0 0

from (1.3) and [2]

ds

(0, y)——je( )nf2

y—s
(1.10)

J‘ 1g(1)
11t2 +y

Now we turn to the Robin condition, which gives us
the equation

y+S

0r) = 4() ~ ()~ j o) =

(1.11)
1g(?)

e
+ —
T 2 +y?

dr].

Further simplification is possible. We have

j g0
0

1
tdt
- d
! f(”[! e

< / 2 ../ 2
_J.g(s)[lnw]ds
y+s
0

Thus, & (y) is determined by the Fredholm’s integral
equation of the second kind:

SN PN R et S
0(y) h(y)! O e el

=F(y) 0<y<oo,
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h 2
where j‘ ot 1-x du

V=) ! JeZheu?

Jx2+y?
V1=x2 +4/1+ 2 .

1
F3) =900~ h0) = [ 7oL
s Vi-x2 +x/1+y2

—In

Putting the pieces together, & (y) determines g(t)
which in turn allows us to compute

b)
D(x,y).
1
J tdt _
Note. In the above integral equation we used the o V(@ 2yt +57)
following Integrals:
a) j' tdt
0 \/(tZ + y2 +52)2 _(y2 _SZ )2
1 t 2 2
J’ tdt f(x)dx
O\/t2+y2 Ox/tz—xz Let
1 ‘ tdt
[ rean ] ——2t. L s |yes]
q L2 =3 +y?) 2 [ 2|
1 tdt B
but th.e inper igtegral of right side can be written after 2 J2+ 32 452 o y2 g2 .
changing in variables: ) )

o2 o122
t? =x%cos’> a+sin’a IHM.

y+s
and
Next we show how the conformal mapping w =
2sin"'z may be gainfully used to solve the problem.
dt = (1-x?)sina cosa da Let
. . . u+iv
| w = 2sin" z, x +1iy = sin
'[ tdt _
2 _ 2\(/2 4 2
x ‘/(t XN +y7) implies that,
j‘ V1-x2 cosa p X = sin%cosh%, y= cos%sinhz
a.
0 \/(x2 +y)+(1-x?)sin’ &
Let
Using another change of variable of the form
V1-x? sina =u one gets, O(x,y) = Y(u,v).
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The boundary conditions change to: or,
AY (u,v)=0 1 2% u u 1

-—)a, =—— sin—)cos—cos(n ——)udu . (1.15
(=), ”gﬂ J)eos” cos(n——yudu . (L15)
1- ¥, (0,v)sechv+ h(sinh%)‘l’(o, v) = g(sinh %) ,

From the above relation one gets

2- ¥, (u,0)sechv = f(sinh %) cos% ,0<u<r,

a, = j f(sin —)cos—cos(n——)udu. (1.16)
7z(2 -1)
3- ¥(z,v)=0,v>0,
We formulate an auxiliary problem for Laplace’s Then
equation
AY(u,v) =0 ¥, (0v) = Za exp[— (n——)v]
n=1
, (1.17)
1- W, (0,v) = O(v), v >0, x

+ J'c(g) sinh & cos(vE)d&

.U u 0
2- ¥, (u,0)= f(s1nh5)c055, O<u<m,

and,
3- ¥(z,v)=0,v>0.
Sipge we have a non—homogenOL}s bc?undary ¥ (0,v) = —IC(§) cosh & cos(vE)dE = O(v) . (1.18)
condition, ‘Y(u,v) has the following integral 0
representation:
We need to express W(0,v) in terms of & and f.
Y(u,v) =

Therefore from (1.18) we get

io: a, exp[—(n —%)v] cos(n —%)u (1.12)

n=l & c(&)cosh & = _—ZIQ(S) cos(&s)ds . (1.19)
T
0
+ jc(g) Sinh(r — )& cos(vE)dE .
0 The above relation yields:
From boundary conditions (1) and (2) we obtain @
J'c(g) sinh 7z& cos(VE)dE =
w 0
Ic(f) sinh(z —u)é& cos(vE)dE =-0(v), (1.13) " (1.20)
0 __Zja(s) ds J‘ cos&s cos Evsinh 7z§ dc.
V4 &cosh &
. 1 1 . u u

Z(n——)an cos(n——)u = f(sinh—)cos—, (1.14) ) ) ] ) )
pry 2 2 2 2 The inner integral at right side can be written as
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follows [2]:

00

lj%[cos E(v+s)+cosé(v—s)]déE =
T
o (1.21)

V—

N
4

-1 log[coth(v—ﬂ) coth(——)]
T 4

As in previous case, the Robin condition will give a
Fredholm’s integral equation of the second kind with a
complicated kernel that can be solved

O(v)sec hv + h(sinh %)‘P(O,v) = ¢(sinh g) (1.22)

with,

Y(0,v)= i a, exp[—(n —%)v]

n=1

0

+'[c(§) sinh 7& cos(vE)dE,

0
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o0

Ic(f) sinh 7& cos(vE)dE =

0

v+s A

coth 2 =2 1ds ,
4

2 j 0(s)[logcoth
0

a,= —Ljf(sin z) coszcos(n —l)udu .
z(2n=1) ¢ 2 2 2
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