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Abstract

This paper deals with a theoretical mathematical analysis of one-dimensional
solidification problem, in which kinetic undercooling is incorporated into the This
temperature condition at the interface. A-model problem with nonlinear Kinetic
law is considered. We prove a local result intimate for the uniqueness of solution
of the corresponding free boundary problem.
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Introduction

It is well known that in many industrial. areas, the
solidification process plays a significant role. Mathe-
matical models of solidification “including interface
kinetics effects have been considered for quite some
time (see [1], and references therein). This class of free
boundary problems, which arises”in a number of
physical situations, is that of on equilibrium problems,
in which the phase -"change temperature is dependent
on the velocity of the front at which the phase-change
occurs (for more physical problems, see [3-7]). Here,
we study a model problem with nonlinear kinetic law at
the interface in the one-dimensional case. Specifically,
let the curve with s(0)=b(0O<b<l) be defined as the
interface that separates the liquid and solid phases. With
u denoting temperature (scaled so that is vanishes at
equilibrium), we may write the system of equations as

U= KUy in Q = {(x )0 <x<s@®)0<t<T} (L1)

Uy = KUy in Q = {(x,0<x<s®)0<t<T} (L2)
and on the interface x =s(t) as
Uy =u, =g, (v(1)), (1.3)
Kug —Kuy =g,(v(t)), (1.4)
s(0)=b, 0<b<1, (1.5)

where K| and K, are thermal diffusivities of a liquid and
a solid respectively, L >0 is the latent heat and the
superscripts + and — denote, respectively the right-hand
and left-hand limits with respect to the special variable
X. These equations are subject to the initial and boun-
dary conditions
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u(x,0)=g,(x) 0<x<b, (1.6)

u(x,0)=g,(x) b<x<1, (1.7)

ui-1t)=f;(t) t=0, (i=12) (1.8)
where

V(t)= aslt) (1.9)

is the propagation velocity of the free boundary. The
free boundary problem considered here was formulated
in [1], where reduction the problem to an integral
equation was given. In the context of solid fuel
combustion, s(t) represents the boundary between the
unburnt and burnt material, and u;,u,, are the
nondimensionalized temperature in the unburnt and
burnt material respectively, (see [3-7] and references
therein). The temperature at the free boundary controls
its velocity V (t) = g7 (u,(s(t),t)) . The heat exchange
between the unburnt (x <s(t)) and burnt materialis
modeled by the boundary condition in (1.4) which;.in
principle, may be nonlinear.

Main Results

Theorem. Consider the problem (1.1)-(1.9). Suppose
that the kinetic function and iinitial and boundary data
satisfy the assumption (H;)—(Hs3) in [1]. Then the

problem (1.1)-(1.9) has not more than one solution.
To prove uniqueness for t<o suppose that

Ug = (Ugg,Ugy),So 1S another solution of (1.1)-(1.9) for

t<o and vy (t) = (Vgu(t), Voo (t))" is another solution

of integral equations (26) and (27) in [1]. It suffices to
prove uniqueness, forany ¢ <o .

Let

M = Max{M ,Ol.u.lg|v0(t)|}
<t<c

where M introduced in section 4.2 in [1], and let be
any positive number satisfying
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V5 <
Min{(c2||¢l-||+c3|| flCy G o0 M

(D, + D3 + D, M + Dy + Dy |+ Do | ) %}

where the constants C; and D, i=2,3,...,7 are simple
combination of ;z,b,%,M ,M',M,,M,, K. Then by the
same calculations-in:[1] which were used to prove that

T maps By, into itself (where T and By .

introduced in subsection 4.2 in [1]) and is a contraction
one shows that T maps B~ into itself and is a

contraction. Hence, there exists at most one fixed point
of T in BM.E' It follows that v(t)=v,(t) for
0<t< o, where v(t) is solution of integral equations
(26) and (27) in [1]. Hence also s(t) =sy(t)
Ut =up(x,t) if 0<t<o, 0<x<s(t) and
S(t) < x <1. We next consider the system (1.1)-(1.9) for
t>o, ie. (1.1)-(1.5), (1.8), (1.9) are considered for
t>o (instead of t>0) where as (1.6), (1.7) are
replaced by ul(x,g) = ul(x,g) for 0<x<s(o),
Uy(X,0) = U, (x, o) for s(o) < x<1.

This problem can again be transformed into integral

equations (26), (27) in [1] extend to the present integral
equation provided M is replaced by M, where

Mo = lub V), (v ()]

Similarly to section 4 in [1], we reduce the problem
(1.1)-(1.9) for u,,S, in the interval o <t<o to an

integral equation. Since ul(x,;):ul(x,g), uz(x,;):
uz(x,g), the integral equation for v(t)and v,(t)

coincide. Repeating now the same argument as before
we conclude that for v(t) = v, (t) forany o satisfying

JG6-5)<

: - - — 1M,
Mm{(c2||¢1||+c3|| |+ Cs +CsMg +C +C5 ) 170,

(D, + Dy + DMy + Ds + Dg s+ s | £ %}
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(Mo = Max{My, | ub Vo ®)})

We can now proceed in the same manner as before in
[2] step by step, nothing that in each step the time
interval can be taken to be >¢ where satisfies

Je <

(I RERET LR
(D, + D3 + D4 M; + Ds + Dy oy |+ Dy | 5] %}

where
M = Max{lub |V ()g:(vVO)], lub vy (1)}

Having proved existence and uniqueness for all
t <o where o is any positive number satisfying (36)
in [1]. Let us stress that the previous proof (see (38),
(39) in [1]) shows also the following:

If instead of (1.1)-(1.9) for t >0 we consider (1:1)-
(1.9) for t> A1, ie., (1.1)-(1.5), (1.8), (1.9) hold for
t> A and (1.6), (1.7) replaced by u;(x, 2)=uy(x, &) for
0<x<s(4) and u,(x,4)=u,(x,4) for.s(1)<x<1
respectively, and if

S(l),—éL—

V ()9, (v ()], SC)

are bounded independently of "1, then there exists a
unique solution for <the problem in an interval
A<t<A+e&, where & is some positive number
independent of A .

Since for any solution of (1.1)-(1.9) the function s(t)

iS monotone non-decreasing, le. To complete
s(4) b
the proof of theorem it suffices to prove the following
statement:
For every t, >0 there exists an & > 0such that if the

system (1.1)-(1.9) has a unique solution for all t<t,
then it also has a unique solution for all t <ty +& in
view of the previous remarks it suffices to show: If
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u(x,t) s(t) is a solution of (1.1)-(1.9) for all t<t,,
then for all >0 sufficiently small, the functions

|-U-bIV (to—ma1(V(to —’7))| . Sty —17) (2.1)
are bounded independently of 7 . If we prove that

Lublv(t) < o,

then from (28) in'[1] follows the boundedness of s(t) for
t <ty . Consequently, if we prove (2.2) then the proof of

theorem is completed.
Proof of (2.2). We use for v(t) the integral equation

which™ corresponds to the system (1.1)-(1.9) in the
interval to—p<t<u (u sufficiently small) in [1].

Since
U (0,tg — w) = f1(tg — 1), U5 (0, tg — ) = fo(tg — 1)

the equations are

vi(t) ==, (V(O)V (1) +

2 (et - NGOt - 0
t

+L v, (2)G, (s(t),t; s(r), 7)d
0~H

-2J: H(IN(s(0),1:0,7)d 7 +
209, (V (to — ))N(s(t), t;s(ty — 1), tg — 1)

+2[" gV INGW.t(), 7)de
to—u

—2jt 9, (V (D (2)G, (s(t) ~Lt;5(z), 7)d 7
to—p
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Vo (1) = =g, (V OV (1)

=295 (V(to — )N (s(t) =L t;5(r) —L,tg — )

' GV EINGO Lt s -10)de
to—p

-2jt v, (0)G, (s(t) -1 t;5(r) -1, 7)d
to—u

0

1
" st(to_y)uzé (& tg —)N(s(t)-1,t; &ty — p)dE

+j: £ (N (s(t) -1 0, 7)d 7

In section 4 in [1] we proved V, (t) and V,(t) are
bounded functions, we obtain that

Lublv(t) <
O<t<t,
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therefore we established theorem.
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