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1. Introduction 

Prediction theory of stationary stochastic processes 
has been extensively developed and is now considered 
to be complete. The existence of bounded shift for 
stationary processes has played a major role in this 
development. The existence and boundedness of shift 
for non-stationary processes is important [1]. An 
interesting class of non-stationary stochastic processes 
is that of periodically correlated )PC(  processes. This 
class of processes has been studied by several authors 
[2-14]. However, questions concerning their shift have 
not yet been considered. In this note, we study these 
questions and obtain spectral criteria for the existence of 
bounded shift for PC  processes. 

2. Preliminaries 

Let ),,( ΡΩ β  be a probability space and ),,(2
0 ΡΩ βL  

denote the space of all complex-valued random 
variables on Ω  with zero mean and finite variance. The 

inner product and norm here are given by 

∫Ω Ρ== )()()()(),( ωωω dYXYXEYX  

and   ),( XXX = . 

Any sequence { }ZnX n ∈,  of random variables in 
),,(2

0 ΡΩ βL  will be called a stochastic process and its 
correlation function ),( nmR  is defined by 

)(),( nm XXEnmR = . 

Given a stochastic process nX , its shift operator V  
is a linear transformation which sends nX  to 1+nX , for 
each Zn∈ . In general this operator is not well-defined 
and in order to make the above definition, it is necessary 
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to impose certain restrictions on nX . Before we 
proceed further, let’s now state the formal definition of 
shift operator and consider an example where this 
operator is not well-defined. 
 
Definition 2.1. (a) A stochastic process nX  is said to 
have a shift if the linear transformation V  on 

{ }ZnXSΡXL n ∈= :)(  which sends each nX  to 1+nX  
is well defined. (b) A process nX  is said to have a 
bounded shift if it has a shift which can be extended to 

{ }ZnXSPXH n ∈= :)(  

as a bounded operator. 
 

Example. Let nY  be any nonzero stochastic process and 
define a new stochastic process nX  by 

⎪⎩

⎪
⎨
⎧

+=

=
=

120

2

knif

knifY
X k

n  

The shift operator for nX  is clearly ill-defined 
because it sends a zero vector, say 1X  to a nonzero 
vector, say 2X . If we take the original stochastic 
process nY  to be a nondeterministic, then we get an 
example of a stochastic process nX  which has no shift. 

 
Definition 2.2. A stochastic process nX  is called 
stationary if 

),(),( 11 ++= nmRnmR  

For all Znm ∈, . 
It is well-known that any stationary stochastic pro-

cess has a bounded shift and that it is a unitary operator. 
However, for a non-stationary process as we saw above 
the shift may not even exist and in order for a stochastic 
process nX  to have a shift we must impose some 
restrictions on the process nX  or its correlation func-
tion ),( nmR . For the following lemma one can see [1]. 

 
Lemma 2.3. Let nX  be a stochastic process with 
correlation function ),( nmR  as defined above. Then 

(a) In order for nX  to have a shift it is necessary and 

sufficient that for any finite sequence { }na  of complex 
numbers 

0)1,1(0),( =++⇒= ∑∑ nmRaanmRaa nmnm . 

(b) In order for nX  to have a bounded shift it is 
necessary and sufficient to have a positive number M  
such that for any finite sequence { }na  of complex 
numbers 

∑∑ ≤+ + ),()11( , nmRaaMmRaa nmnm n . 

We close this section with a brief introduction to 
periodically correlated processes. 

 
Definition 2.4. A stochastic process nX  is called 
periodically correlated with period p if for all Znm ∈, , 
we have 

),(),( pnpmRnmR ++= . 

Such a process will be briefly called a PC  process. 
Let nX  be a PC  process with period p . Then for each 
integer τ , the function ),( τ+nnR  is periodic in n  with 
period p . Therefore it has Fourier expansion 

∑
−

=

=+
1

0

)2exp()(),(
p

k
k p

iknRnnR πττ , 

where )(τkR  are given by 

∑
−

=

−+=
1

0

)2exp(),(1)(
p

n
k innnR

p
R τπττ . 

For convenience, we extend the definition of these 
11,0,)( ,, −= pkRk …τ  to all integers k  by )(τkR  

)(τpkR += . 

It is shown in [3] that each )(τkR  has a spectral 
representation of the form 

∫ −=
π

θτ τθ

π
2

0
)(

2
1)( k

i
k dFeR  

www.SID.ir 



Arc
hi

ve
 o

f S
ID

J. Sci. I. R. Iran Miamee and Shahkar Vol. 13  No. 2  Spring 2002 

169 

where each kdF  is a complex-valued measure on 
)2,0[ π . One can then see that 

∫ ∫ −−=
π π

λθλθ

π

2

0

2

0
)(

2
),(

4

1),( dFenmR nmi  

where the spectral measure dF  of nX  is given by 

∑
−

−=

−=
1

1

))2((),(
p

pk
k p

kBAFBAF π∩ . 

Here aB −  stands for the set of all numbers of the 
form ab −  with Bb∈ . This shows that spectral 
measure dF  of any PC  process is concentrated on 

12 −p  line segments ==− kpk ,/2πλθ  
1,,1 −− pp … , contained in the square )2,0[)2,0[ ππ × , 

and 

∫ −−=−=
π

θ
π

θ
2

0
)( )(

2
1)(),( dFenmrnmR nmi  

3. Shift for PC Processes 

In this section we study the questions of existence 
and boundedness of shift for PC  processes. We first 
obtain some basic results and then prove our main result 
which gives several criteria for existence and 
boundedness of shift including a spectral criterion. 

 
Lemma 3.1. Let nX  be a PC  process with period p . 

(a) If nX  has shift V  then V  is invertible. 
(b) If nX  has bounded shift V  then V  is boundedly 

invertible. 
 

Proof. (a) Suppose nX  has shift V  and assume 

0=∑ nn Xa  for some finite sequence { }na  of complex 

numbers. This means that 0),( =∑ nmRaa nm . App-

lying Lemma 2.3(a) we get 0),( 11 =++∑ nmRaa nm . 

Applying Lemma 2.3(a) 2−p  more times to the latter 
equation, we get 

0)1,1( =−+−+∑ pnpmRaa nm . 

Considering that nX  is PC  with period p , we get 

0)1,1( =−−∑ nmRaa nm , 

which means 01 =∑ −nn Xa . So we showed that for 

any sequence of complex numbers na  

00 1 =⇒= ∑∑ −nnnn XaXa . 

But this is clearly equivalent to the existence of the 
inverse U  of V  which sends each nX  to 1−nX . 

(b) Suppose nX  has a bounded shift V . and let na  
be a finite sequence of complex numbers. Applying 
Lemma 2.3(b) 1−p  consecutive times we arrive at 

,),(

)1,1(

1∑

∑
−≤

−+−+

nmRaaM

pnpmRaa

nm
p

nm

 

which in conjunction with the fact that nX  is 
periodically correlated with period p  implies 

∑∑ −≤−− ),()1,1( 1 nmRaaMnmRaa nm
p

nm . 

Therefore 

212
1 ∑∑ −
− ≤ nn

p
nn XaMXa , 

which implies that backward shift U  sending each nX  
to 1−nX  has a bounded extension to )(XH . Since 
clearly 1−=VU , we conclude that V  is boundedly 
invertible. 

The following remarks follows from the proof of 
Lemma 3.1. 

 
Remarks 3.2. Let nX  be any PC  process with period 
p . 

(a) If nX  has a shift (bounded shift) V , then it has 
shifts (bounded shifts) kV , of any order Zk ∈ , sending 
each nX  to knX + . In fact, it is clear that k

k VV = . 
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(b) The shift pV  always exists and it is unitary. 

(c) If nX  has a bounded shift V , then for any 
positive integer k , 

k
k VV ≤     and    )1( −

− ≤ pk
k VV . 

Before we proceed further, we need to introduce 
some terminologies. Let qHHH ,,, 21 …  be q  Hilbert 

spaces. Their direct sum qHHH ⊕⊕⊕ …21 , equipped 

with the Euclidean inner product  

∑
=

=
q

i
ii YX

1

),()),(( YX  

becomes a Hilbert space. Here qXXX ⊕⊕⊕= …21X  

and qYYY ⊕⊕⊕= …21Y , with iii YX H∈, . Direct 

sum of q copies of H  will be denoted by qH . 
 

Lemma 3.3. A stochastic process nX  in =H  
),,(2

0 ΡΩ βL  is periodically correlated with period p  if 
and only if its associated process nZ  in qH  defined by 

11 −+⊕⊕⊕= + pnn XXX nn …Z  

is stationary. 
 

Proof. “only if” part: If nX  is a PC  process with 
period p , then for any m  and n  in Z , we can write 

∑

∑

∑

∑

=
++

−

=
++++

−

=
++

−

=
++

=

+=

+=

=

p

i
inim

p

i
inimpnpm

p

i
inimnm

p

i
inimnm

XX

XXXX

XXXX

XX

1

1

1

1

1

1

0

),(

),(),(

),(),(

),()),(( ZZ

 

.)),((

),(

11

1

0
11

++

−

=
++++

=

=∑

nm

p

i
inim XX

ZZ

 

This means that mZ  is stationary. Proof of “if” part 
is similar. 

 
Lemma 3.4. If nX  is a PC  process with period p  then 
the spectral measure of its associated stationary process 

nZ  introduced in last lemma is DpdF  , where DdF  is the 
part of the spectral measure dF  of nX  supported on 
the main diagonal of the square mentioned in section 2. 

 
Proof. For the proof, we refer the reader to [7]. 

 
Definition 3.5. A stochastic process nX  in the Hilbert 
space ),,(2

0 ΡΩ=Η βL  is called linearly stationary if 
there exists a stationary process nW  in another Hilbert 
space κ  and an invertible transformation H→κ:T  
such that nn TWX = , for all Zn∈ . A linearly 
stationary process nX  is called bounded linearly 
stationary if the transformation T  can be chosen to be 
bounded. 

It is clear that linearly stationary processes are in 
general non-stationary. Nevertheless prediction 
properties of linearly stationary processes can easily be 
investigated. Because one can transfer a prediction 
problem concerning a linearly stationary process nX  to 
one about its stationary counterpart nW , we find the 
solution for this stationary process nW  and then transfer 
the result back to the original process nX  For more 
detail, one can see [15]. 

In what follows, we will use the following notations 
and terminologies. 

Let nX  be a PC  process with period p in 
),,(2

0 ΡΩ= βLH  and nZ  in pH , be its associated 
stationary process introduced in Lemma 3.3, namely: 

11 −+⊕⊕⊕= + pnn XXX nn …Z  

Now let ppP HH →:  denote the orthogonal 
projection which maps any vector in pH  to its first 
coordinate, i.e. 
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121 )( XXXXP p =⊕⊕⊕ … , 

for any H∈pXXX ,,, 21 … . We denote by κ  the 

subspace of pH  spanned by all s'nZ  and Q  to stand 
for the restriction of P  to κ . 

 
Theorem 3.6. For any PC  process nX  with period p , 
the following statements are equivalent. 

(a) nX  has a bounded shift V . 
(b) nX  is bounded linearly stationary. 
(c) The operator HQ →κ:  defined above is 

boundedly invertible. 
 

Proof. We prove (c)(b)(a) ⇒⇒ . 
(c)(a) ⇒ : Take a finite linear combination 

∑ nn Xa . We can write: 

.)1(
2)1(22

21

22

2
1

2
1

22

∑

∑

∑∑

∑

∑∑∑

−

−

−+

+

+++≤

++

+=

++

+=

nn
p

nn
p

nnnn

pnn

nnnnnn

XaVV

XaV

XaVXa

Xa

XaXaa

…

…

…

Z

 

which shows the inverse of Q  exists and is bounded. 
)(b(c) ⇒ : By Lemma 3.3, nn ΡX Z=  where nZ  is 

the stationary process associated to nX . Since each nZ  
is clearly in κ  and Q  is the restriction of Ρ  to κ  then 
we get nn QX Z=  for all Zn∈  and this completes the 
proof. 

)(a(b) ⇒ : Suppose there is a stationary process 

nW  and boundedly invertible operator )(: WHT  
)(XH→  such that 

)( nn WTX =    for all   Zn∈ . 

Let U  be the well-known unitary shift of the 
stationary process nW  and define )()(: XHXHV →  by 

1−= TUTV . 

One can check that V  is the shift of our process nX . 
Now since T  and U  are bounded 1−= TUTV  is 
bounded. 

 
Theorem 3.7. Let nX  be a PC  process with period p . 
The following statements are equivalent. 

(a) nX  has a shift. 

(b) nX  is linearly stationary. 
(c) The operator H→κ:Q  defined above is 

invertible. 
 

Proof. (c)(a) ⇒ : Suppose nX  has a shift, say V  and 
suppose a finite linear combination of nX  is zero, i.e. 

0=∑ nn Xa . Applying V  to both sides of this 
equation 1−p  times, we get 

.0,,0 11 == ∑∑ −++ pnnnn XaXa …  

Thus 

0
1

0

22
==∑ ∑∑

−

=
+

p

i
innnn Xaa Z  

which means 0=∑ nna Z . Hence Q  is invertible. 

(b)(c) ⇒ : By Lemma 3.3, nn ΡX Z=  where nZ  is 
the stationary process associated to nX . Since each nZ  
is clearly in κ  and Q  is the restriction of Ρ  to κ  then 
we get nn QX Z=  for all Zn∈  and this completes the 
proof. 

)(a(b) ⇒ : Let nW  be the stationary process and 
)()(: XLWLT →  be the linear transformation with 

nn TWX =  and )()(: WHWHU →  be the standard 
unitary shift operator of the stationary process nW , then 
the linear transformation 1−= TUTV  clearly serves the 
desirable shift for nX . 

Next theorem gives our spectral characterization for 
a PC  process to have a shift. 

 
Theorem 3.8. Let nX  be a PC  process with period p  
whose spectral measure )(⋅dF  is concentrated on p2  
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line segments 1,,0,,1,/2 −−==− ppkpk ……πλθ  
of [ ) ( ]0,22,0 ππ ×  with the measure on the diagonal 
being 0dF . 

(a) nX  has a bounded shift if and only if there exists 
a positive number K  such that 

∫ ∫∫ ≤
π ππ

λθλφθφθθφ
2

0

2

0

2

0
0

2 ),()()()()( dFKdF  

for any trigonometric polynomial ∑ −= θθφ in
nea)( . 

(b) nX  has a shift if and only if 

,0)(

0),()()(

2

0
0

2

2

0

2

0

=⇒

=

∫

∫ ∫
π

π π

θφ

λθλφθφ

dF

dF

 

for any trigonometric polynomial function =)(θφ  

∑ − θin
nea . 

 
Proof. (a) If nX  has a bounded shift then by Theorem 
3.6, the operator Q  is boundedly invertible. This means 
there exists some 0>M  such that 

∑∑ ≤ nnnn XaMZa  

for every finite sequence na  of complex numbers. 
Squaring both sides and rewriting it in terms of the 
spectral measure we get 

∫ ∫∫ ≤
π ππ

λθλφθφθφ
2

0

2

0
2

2

0
0

2 ),()()()( dFMdFp  

where ∑ −= θθφ in
nea)( . This shows that (1) holds 

with pMK /2= . Now assume that inequality (1) 
holds. We can rewrite it as 

22
)/( ∑∑ ≤ nnnn XaKap ZA , 

which means the operator Q  in part (c) of Theorem 3.6 
is boundedly invertible. This in virtue of Theorem 3.6 
completes the proof of part (a). 

Proof of part (b) is similar to the proof of part (a). 
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