A SHORT PROOF FOR THE EXISTENCE OF HAAR MEASURE ON COMMUTATIVE HYPERGROUPS

R.A. Kamyabi-Gol*

Department of Mathematics, Faculity of Mathematical Science, University of Mashhad, Mashhad, Islamic Republic of Iran

Abstract

In this short note, we have given a short proof for the existence of the Haar measure on commutative locally compact hypergroups based on functional analysis methods by using Markov-Kakutani fixed point theorem.

Keywords: Hypergroups; Haar measure; Markov-Kakutani

Introduction

A fundamental open question about hypergroups is the existence of a Haar measure for any hypergroup (for a definition the reader can consult with Jewett [6]). If a hypergroup \$K\$ is compact or discrete, then \$K\$ possesses a Haar measure. All known examples have a Haar measure [6, s5]. Spector in [11] claims that any commutative hypergroup possesses a Haar measure but as Ross in [9] mentioned there are several technical problems in his proof. Ross in [9] has given a lengthy proof for the existence of the Haar measure on commutative hypergroups. Recently Izzo in [5] has given a short proof of the existence of Haar measure on a commutative locally compact group by using the Markov-Kakutani fixed-point theorem [1, pp. 151-152]. Based on his idea, we give a short proof of the existence of the Haar measure on commutative hypergroups. For definitions and notations we follow Jewett [6].

For the reader's convenience, we include the Markov-Kakutani fixed point theorem. Let \$\cal S\$ be a compact convex subset of a Hausdorff topological vector space and \$\cal F\$ be a commutative family of continuous affine mappings of \$\cal S\$ into \$\cal S\$

that is abelian. Then there exists $p\in S$ such that $\Delta(p) = p$ for all $\Delta(p) \in P$ (for a proof see [1]).

Note 1.1. For a vector space X, let X^{\pm} be the space of all linear functionals on X with the weak topology induced by X. Then, if C is a closed subset of X^{\pm} such that the set $\lambda \times \mathbb{C}$ is bounded, for any $x \in \mathbb{C}$ is compact [3, pp. 423-424].

Lemma 1.2. Let K be a hypergroup and U a symmetric neighborhood of the identity $\epsilon \in K$. Then there exists a subset M of K such that for any finite subset $A_1, A_2, A_3 \in A_n$ of K, the set $A_1*A_2 \in A_n \in A_n$ and the set $A_1*A_2 \in A_n \in A_n$.

 $\label{thm:linear_poof_poof_poof} $$ \Pr G_A = {T\subset K:\, \mbox{for any} p\neq q\in T, \mbox{there is a finite subset}\\ a_1,a_2,\ \mbox{such that} p\neq \mbox{such that} p\to \mbox{a^*A\br{A},\mbox{where}\br{A}=U^*\br{a_n}^*\cdots *\br{a_1}}.$

^{*}E-mail: kamyabi@math.umac.ir

Then \$\cal A\$ is non-empty (all single subsets of \$K\$ are in \$\cal A\$) and any chain \$\{T_\al\}_{\al\in I}\$ in \$\cal A\$ has an upper bound \$\cup_{\al\in I}\$ T_\al\$. So by Zorn's Lemma \$\cal A\$ has a maximal element \$M\$. By using [6, 4.1A, 4.1B], we have \$M\cap a*U*U\neq \emptyset\$. Now for \$\{a_1, a_2, \cdots, a_n\}\$ an arbitrary finite subset of \$K\$, we have \$ M\cap a_1*a_2*\cdots*a_n*U*U=M\cap(\cup_{x\ina_1*a_2}\cdots*a_n}\,x*U*U)=\cup_{x\ina_1*a_2}(\cdots*a_n),(M\cap x*U*U)\neq\emptyset\$.

To show that \$M\$ intersects \$a_1, a_2,\cdots, a_n*U*U\$ at most at one point, let there are \$s_1\$ and \$s_2\$ in \$M\$ that \$s_1\neq s_2\$ and \$s_i\in a_1*a_2*\cdots*a_n*U\$ for \$i=1,2.\$ Then by using [6, 4.1A, 4.1B] we have \$s_1\in s_2*A*\br{A}\$, where \$A\$ is \$U*\br{a_n}*\cdots*\br{a_2}\$ and this contradicts \$M\in {\cal A}\$. So the proof of the Lemma is complete.

Theorem 1.3. Every commutative hypergroup \$K\$ has a left Haar measure.

Proof. Let $C_{00}(K)^{\#}$ be the space of all linear functionals on $C_{00}(K)$. We consider on $C_{00}(K)^{\#}$ the weak topology generated by $C_{00}(K)$. It is clear that if there exists a $\Lambda C_{00}(K)$. It is clear that if there exists a $\Lambda C_{00}(K)$. It is clear that $f(\Lambda) = 0$ for all f(L) = 0. So $C_{00}(K)$ with $C_{00}(K)$, then $\Lambda = 0$. So $C_{00}(K)^{\#}$ with this topology is a locally convex space [4, p. 50]. Let U be a fixed symmetric neighborhood of the identity A with compact closure. Let A be the set of all positive linear functionals $\Lambda = 0$. So $C_{00}(K)$ that satisfy the following two conditions:

- (i) $\Delta(f)\leq 1\$ whenever $f\leq 1\$ in $C_{00}^+(K)\$ and $f\leq a_1*a_2*\cdot a_r*U\$ for some finite subset $\{a_1,a_2,\cdot a_r\}\$ in $K\$,
- (ii) $\Lambda(f)\geq 1$ whenever $f\leq 1$ in $C_{00}^+(K)$ and f=1 on $a_1*a_2*\cdot r*U*U$ for some finite subset $A_1, a_2\cdot r*J*U$ in K.

Then one can easily check that $\c S$ is closed and convex. Moreover, any $f \in C_{00}^+(K)$ can be written as a finite sum of non-negative continuous functions, each of which has support in a*U for some $a\in K$ To see this, let $p\in K$ (compact set). Then $C\subseteq K$ (compact set). Then $C\subseteq K$ for some $a\in K$ then $C\subseteq K$ for some $a\in K$ then K for some $a\in K$ then K for some $a\in K$ then K for some $A\subseteq K$ for K for some $A\subseteq K$ then K for some $A\subseteq K$ for K such that $A\subseteq K$ for $A\subseteq K$ for some $A\subseteq K$ for $A\subseteq K$ such that $A\subseteq K$ for $A\subseteq K$ for some $A\subseteq K$ for $A\subseteq K$ for any $A\subseteq K$ for any $A\subseteq K$ for some $A\subseteq K$ for any $A\subseteq K$ for some $A\subseteq K$ for any $A\subseteq$

 $\Delta(f):\ \Delta(f):\ S \$ is bounded. So by Note 1.1., $\$ is compact.

To see \$ \cal S\$ is non-empty, let \$M\$ be as in Lemma 1.2. Put $\Lambda(f) = \sum_{s\in M} f(s), f(s)$, then $\Lambda \in \mathbb{S}$. Indeed, if $f \in \mathbb{S}$ $C_{\{00\}^+}(K)$ and $f\leq 1$ with $spt f\leq 1$ $a_1*a_2*\cdots*a_n*U$ for some $a_i\in K$, $1\leq i\leq n$ by Lemma 1.2., \$M\$ intersects then \$a_1*a_2*\cdots*a_n*U\$ at most at one point. Hence $\Lambda(f) \leq 1$. If $f \in C_{00}^+(K)$ and f = 1on $a_1*a_2*\cdots*a_n*U*U$ for some $a_i\in K$, 1\leq i\leq n\$, then again by Lemma 1.2., \$M\$ intersects \$a_1*a_2*\cdots*a_n*U*U\$ at least at one point. So $\Lambda(f) \geq 1$.

For each \$x\in K\$ and \$\Lambda\in \cal S\$, let $T_x:\ C_{00}(K)^{\#}\ C_{00}(K)^{\#}$ is defined by $T_x\subset \Delta(f)= \Delta(f)$ for $f\in \Delta(f)$ $C_{\{00\}}(K)$ \$ where\$\,_xf(y)=f(xy)\$. Then it is easy to see that T_x is affine and $T_x(\c S)$ is ubseteq $\c S$ S\$. Indeed, let \$\Lambda\in \cal S\$. If \$f\in $\mathbb{C}_{\{00\}}^+(K)$ \$ and $f\leq 1$ \$ with $spt f\leq 2$ a_1*a_2*\cdots*a_n*U\$ for some \$a_i\in K,\quad $1 \leq i \leq n$, then $\frac{n}{n} C_{00}^+(K)$ [6, 4.2E] 1\$ with \$spt(xf)\subseteq and $\$ _xf \leq $\br{x}*a_1*a_2*\cdots*a_n*U$. So by (i) \$\Lambda $(xf)\leq 1$. If $f\in C_{00}^+(K)$ and f= 1 on $a_1*a_2*\cdots*a_n*U*U$ for some $a_i\in K$, $1\leq a_1$ i\leq n\$, then $\ \c C_{00}^+(K)\$ and $\c \c \$ $\frak{x}*a_1*a_2*\cdots*a_n*U*U$. So by (ii), $\$ $Lambda(\underline{xf})\neq 1$ \$.

Also \$T_x\$ is continuous, since if \$\$\lim_al, \Delta _al=\Delta _sin \${\cal S}\$, then for any \$f\in \$C_{00}(K)\$, \$\$\lim_al|T_x\Delta _al(f)-T_x\Delta _cf)| = \$\lim_al|\Delta _al(T_x\Delta _al(f)-T_x\Delta _af)| = \$0\$. Moreover for \$x,y\in K\$, \$T_x(T_y\Delta _af)| = \$T_{x*y}, \Delta _af T_x(T_y\Delta _af)| = \$T_x*y}, \Delta _af T_x(T_x\Delta _af)| = \$T_y(T_x\Delta _af)| = \$T_y(T_x\Delta _af)| = \$T_x*y}, \Delta _af T_x(\Delta _af)| = \$T_x*y}, \Delta _af T_x(\Delta _af)| = \$T_x*x_x \in \$T_x(x,x)| = \$T_x(x,

Now since all elements of $\c S$ are non-zero positive linear functionals on $C_{00}(K)$, by [6, s5.2] the proof is complete.

Remark 1.4. Can the above proof be modified to show that every amenable hypergroup has a left Haar measure, using Day's generalization of Markov-Kakutani fixed-point theorem [2, Theorem 1] (see also [7, Theorem 4.2]). (For an extension to hypergroups see

[10, Theorem 3.3.1].)

It is attempted such modification, but there is a problem in the continuity of action of hypergroup K on $\c S$ (metioned earlier) defined by (x, Λ) longmaps $T_x\Lambda$ where $T_x\Lambda$ where $T_x\Lambda$ in $T_x\Lambda$ in $T_x\Lambda$ where $T_x\Lambda$ in T_x

References

- Conway J.B. A Course in Functional Analysis. Springer-Verlag, New-York (1985).
- 2. Day M.M. Fixed point theorems for compact convex sets, Ill. *J. Math.*, **5**: 585-590 (1961).
- 3. Dunford N. and Schwartz J. *Linear Operators*. Part I, Interscience Publ., New-York (1958).
- 4. Fell J.M.G. and Doran R.S. Representations of *-algebras, Locally Compact Groups, and Banach *-algebraic Bundeles. Vol. 1 (1988).

5. Izzo A.J. A functional analysis proof of the existence of Haar measure on locally compact abelian groups. *Proc. Amer. Math. Soc.*, **115**(2): 581-583 (1992).

Vol. 13 No. 3 Summer 2002

- Jewett R.I. Spaces with an abstract convolution of measures. Advances in Math., 18: 1-101 (1975).
- Rickart C.E. Amenable groups and groups with the fixed point property. *Trans. Amer. Math. Soc.*, 127: 221-232 (1967).
- 8. Ross K. Every commutative hypergroup possesses an invariant measure, (Preprint).
- 9. Skantharajah M. Amenable hypergroups. Doctoral Thesis, University of Alberta (1989).
- Spector R. Apercu de la theorie des hypergroupes, Analyse Harmonique sur les groupes de Lie. Lecture Notes in Math., 497, Springer-Verlag, Berlin-Heidelberg-New York (1975).
- Spector R. Apercu de la Theorie des Hypergroupes, Analyse Harmonique sur les Groupes de Lie. Lecture Notes in Math., 497, Springer-Verlag, Berlin-Heidelberg-New York (1975).

