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Abstract 

In this short note, we have given a short proof for the existence of the Haar 
measure on commutative locally compact hypergroups based on functional 
analysis methods by using Markov-Kakutani fixed point theorem. 
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Introduction 

A fundamental open question about hypergroups is 
the existence of a Haar measure for any hypergroup (for 
a definition the reader can consult with Jewett [6]). If a 
hypergroup $K$ is compact or discrete, then $K$ 
possesses a Haar measure. All known examples have a 
Haar measure [6, s5]. Spector in [11] claims that any 
commutative hypergroup possesses a Haar measure but 
as Ross in [9] mentioned there are several technical 
problems in his proof. Ross in [9] has given a lengthy 
proof for the existence of the Haar measure on 
commutative hypergroups. Recently Izzo in [5] has 
given a short proof of the existence of Haar measure on 
a commutative locally compact group by using the 
Markov-Kakutani fixed-point theorem [1, pp. 151-152]. 
Based on his idea, we give a short proof of the existence 
of the Haar measure on commutative hypergroups. For 
definitions and notations we follow Jewett [6]. 

For the reader’s convenience, we include the 
Markov-Kakutani fixed point theorem. Let $\cal S$ be a 
compact convex subset of a Hausdorff topological 
vector space and $\cal F$ be a commutative family of 
continuous affine mappings of $\cal S$ into $\cal S$ 

that is abelian. Then there exists $p\in \cal S$ such that 
$\Lambda(p) = p$ for all $\Lambda\in \cal F$ (for a 
proof see [1]). 
 
Note 1.1. For a vector space $X$, let $X^{\#}$ be the 
space of all linear functionals on $X$ with the weak 
topology induced by $X$. Then, if $C$ is a closed 
subset of $X^{\#}$ such that the set $\{\Lambda x:\, 
\Lambda\in C\}$ is bounded, for any $x\in X,$ then $C$ 
is compact [3, pp. 423-424]. 
 
Lemma 1.2. Let $K$ be a hypergroup and $U$ a 
symmetric neighborhood of the identity $e\in K$. Then 
there exists a subset $M$ of $K$ such that for any finite 
subset $\{a_1, a_2,\cdots a_n\}$ of $K$, the set 
$a_1*a_2*\cdots*a_n*U*U$ contains at least one 
element of $M$ and the set $a_1*a_2*\cdots*a_n*U$ 
contains at most one element of $M$. 

 
Proof. Let ${\cal A}=\{T\subseteq K:\, \mbox{for any} 
p\neq q\in T, \mbox{there is a finite subset}\{a_1,a_2,\ 
cdots,a_n\} \mbox{of} K \mbox{such that} p\notin 
q*A*\br{A},\mbox{where}\br{A}=U*\br{a_n}*\cdots
*\br{a_1}\}$. 
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Then $\cal A$ is non-empty (all single subsets of 
$K$ are in $\cal A$) and any chain $\{T_\al\}_{\al\in 
I}$ in $\cal A$ has an upper bound $\cup_{\al\in I} 
T_\al$. So by Zorn’s Lemma $\cal A$ has a maximal 
element $M$. By using [6, 4.1A, 4.1B], we have 
$M\cap a*U*U\neq \emptyset$. Now for $\{a_1, 
a_2,\cdots,a_n\}$ an arbitrary finite subset of $K$, we 
have $ M\cap a_1*a_2*\cdots*a_n*U*U=M\cap(\cup_ 
{x\ina_1*a_2*\cdots*a_n}\,x*U*U)=\cup_{x\ina_1*a_
2*\cdots*a_n}\,(M\cap x*U*U)\neq\emptyset$. 

To show that $M$ intersects $a_1, a_2,\cdots, 
a_n*U*U$ at most at one point, let there are $s_1$ and 
$s_2$ in $M$ that $s_1\neq s_2$ and $s_i\in 
a_1*a_2*\cdots*a_n*U$ for $i=1,2.$ Then by using [6, 
4.1A, 4.1B] we have $s_1\in s_2*A*\br{A}$, where 
$A$ is $U*\br{a_n}*\cdots*\br{a_2}$ and this 
contradicts $M\in {\cal A}$. So the proof of the Lemma 
is complete. 

 
Theorem 1.3. Every commutative hypergroup $K$ has 
a left Haar measure. 

 
Proof. Let $C_{00}(K)^{\#}$ be the space of all linear 
functionals on $C_{00}(K)$. We consider on 
$C_{00}(K)^{\#}$ the weak topology generated by 
$C_{00}(K)$. It is clear that if there exists a 
$\Lambda\in C_{00}(K)^{\#}$ such that $f(\Lambda) 
=0$ for all $f\in C_{00}(K),$ then $\Lambda = 0$. So 
$C_{00}(K)^{\#}$ with this topology is a locally 
convex space [4, p. 50]. Let $U$ be a fixed symmetric 
neighborhood of the identity $e\in K$ with compact 
closure. Let $\cal S$ be the set of all positive linear 
functionals $\Lambda$ on $C_{00}(K)$ that satisfy the 
following two conditions: 

(i)  $\Lambda(f)\leq 1$ whenever $f\leq 1$ in 
$C_{00}^+(K)$ and $spt f\subseteq a_1*a_2*\cdots*a_ 
r*U$ for some finite subset $\{a_1, a_2, \cdots,a_r\}$ in 
$K$, 

(ii)  $\Lambda(f)\geq 1$ whenever $f\leq 1$ in 
$C_{00}^+(K)$ and $f=1$ on $a_1*a_2*\cdots*a_ 
r*U*U$ for some finite subset $\{a_1, a_2,\cdots,a_r\}$ 
in $K$. 

Then one can easily check that $\cal S$ is closed and 
convex. Moreover, any $f\in C_{00}^+(K)$ can be 
written as a finite sum of non-negative continuous 
functions, each of which has support in $a*U$ for some 
$a\in K.$ To see this, let $spt f=C,$ (compact set). Then 
$C\subseteq \cup_{1\leq i\leq n}\, a_i*U$ for some 
$a_i\in K$, $1\leq i\leq n$. By the partition of unity on 
compact sets, there are $h_i\in  C_{00}^+(K)$ such that 
$0<\frac{h_i}{f}\leq 1$ on $C$. That is for any $x\in 
C$, $0<h_i(x)\leq f(x)$ and $h_1(x)+h_2(x)+\cdots 
+h_n(x)= f(x)$. Now it follows from (i) that the set $\{ 

\Lambda(f):\, \Lambda\in \cal S \}$ is bounded. So by 
Note 1.1., $\cal S$ is compact. 

To see $ \cal S$ is non-empty, let $M$ be as in 
Lemma 1.2. Put $\Lambda(f) = \sum_{s\in M}\, f(s)$, 
then $\Lambda \in {\cal S}$. Indeed, if $f\in 
C_{00}^+(K)$ and $f\leq 1$ with $spt f\subseteq 
a_1*a_2*\cdots*a_n*U$ for some $a_i\in K, 1\leq i\leq 
n$, then by Lemma 1.2., $M$ intersects 
$a_1*a_2*\cdots*a_n*U$ at most at one point. Hence 
$\Lambda(f) \leq 1$. If $f\in C_{00}^+(K)$ and $f = 1$ 
on $a_1*a_2*\cdots*a_n*U*U$ for some $a_i\in K, 
1\leq i\leq n$, then again by Lemma 1.2., $M$ intersects 
$a_1*a_2*\cdots*a_n*U*U$ at least at one point. So 
$\Lambda(f) \geq 1$. 

For each $x\in K$ and $\Lambda\in \cal S$, let 
$T_x:\, C_{00}(K)^{\#}\to C_{00}(K)^{\#}$ is defined 
by $T_x\Lambda(f)= \Lambda(\,_xf)$ for $f\in 
C_{00}(K)$ where$\,_xf(y)=f(xy)$. Then it is easy to 
see that $T_x$ is affine and $T_x(\cal S)\subseteq \cal 
S$. Indeed, let $\Lambda\in \cal S$. If $f\in 
C_{00}^+(K)$ and $f\leq 1$ with $spt f\subseteq 
a_1*a_2*\cdots*a_n*U$ for some  $a_i\in K,\quad 
1\leq i\leq n$, then $\,_xf\in C_{00}^+(K)$ [6, 4.2E] 
and $\,_xf \leq 1$ with $spt(_xf)\subseteq 
\br{x}*a_1*a_2*\cdots*a_n*U$. So by (i) $\Lambda 
(_xf)\leq 1$. If $f\in C_{00}^+(K)$ and $f= 1$ on 
$a_1*a_2*\cdots*a_n*U*U$ for some $a_i\in K, 1\leq 
i\leq n$, then $\,_xf\in C_{00}^+(K)$ and $\,_xf=1$ on 
$\br{x}*a_1*a_2*\cdots*a_n*U*U$. So by (ii), $\ 
Lambda(_xf)\geq 1$. 

Also $T_x$ is continuous, since if $\lim_\al\, 
\Lambda_\al=\Lambda$ in ${\cal S}$, then for any $f\in 
C_{00}(K)$, $\lim_\al|T_x\Lambda_\al(f)-T_x\Lambda 
(f)| = \ lim_\ al|\ Lambda_\ al(_xf)-\ Lambda (_xf)| = 0$. 
Moreover for $x,y\in K$, $T_x(T_y\Lambda) = T_ 
{x*y}\, \Lambda = T_{y*x}\, \Lambda = T_y (T_x\ 
Lambda)$ for any $\Lambda\in C_{00}(K)^{\#}$. This 
shows that the family ${\cal F}=\{T_x:\,x\in K\}$ and 
$\cal S$ (as above) have all properties in Markov-
Kakutani fixed-point theorem. So there exists 
$\Lambda_0\in \cal S$ such that $T_x\,\Lambda_0= 
\Lambda_0$ for all $x\in K$. In other words 
$T_x(\Lambda_0f) =\Lambda_0(_xf) = \Lambda_0(f) 
\mbox{for all} a\in K \mbox{and} f\in C_{00}(K)$. 

Now since all elements of $\cal S$ are non-zero 
positive linear functionals on $C_{00}(K)$, by [6, s5.2] 
the proof is complete. 

 
Remark 1.4. Can the above proof be modified to show 
that every amenable hypergroup has a left Haar 
measure, using Day’s generalization of Markov-
Kakutani fixed-point theorem [2, Theorem 1] (see also 
[7, Theorem 4.2]). (For an extension to hypergroups see 
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[10, Theorem 3.3.1].) 
It is attempted such modification, but there is a 

problem in the continuity of action of hypergroup $K$ 
on $\cal S$ (metioned earlier) defined by $(x, \Lambda) 
\longmapsto T_x\Lambda \mbox{where} T_x\Lambda 
(f)=\Lambda(_xf) \mbox{for} f\in C_{00}(K)$. 
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