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Abstract 

The improved estimator of the variance in the general linear model is presented 
under an asymmetric linex loss function. 
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1. Introduction 

Consider the canonical form of the general linear 
model and suppose X~NP(µ,τI) and U~Nn(O,τI) are to 
be independently observed. On the basis of these 
observations, τ is to be estimated, where the loss 
function is given by 
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where a≠0 is a shape parameter and b>0 is a scale 
parameter. This loss function which was introduced by 
Varian [1] and was extensively discussed by Zellner [2], 
is useful when overestimation is regarded as more 
serious than underestimation or vice versa. In this 
regard see Parsian and Sanjari Farsipour [3]. 

A sufficient statistic in this problem is (X,T), where 
if ||.|| denotes the usual Euclidean norm, T=||U||2. 

2. MLE and Bayes Estimators 

With U unobserved, we can write down the 
likelihood function, given our normality assumptions, 

and easily obtain the maximum likelihood estimator. 
The likelihood function is 
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So we have X as an MLE of µ, and ∑ =

n

i iU
1

2
2
1  as an 

MLE of τ. Now, we calculate the risk function relative 

to the loss function in (1.1) of ∑=
=

n

i iU
1

2T , we have 

1
2
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naττ  (2.1) 

Now, let λ=τ−1, and introducing a diffuse prior, as the 

one cited in the article by Zellner [1], i.e., 
λ

λπ 1)( =  we 

can derive an optimal estimate that minimizes the 
posterior expected loss of our loss function in (1.1), as a 
solution of the following equation 
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[ ] [ ]tTEetTeE aa B === || λλ λ
λδ
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Hence, the Bayes estimator is Te
a

aB )1( 3
2

2
1 −−=δ . 

Now we are able to obtain the risk function associated 
with this estimator as the following equation 
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and we can compare it with that we already derived 
under the assumption that U is observed. Obviously Bδ  
works better than T, since it is the best invariant 
estimator, and T is an invariant estimator. 

For the loss function of the form 2)1(),( −=
λ
δλδL  

the problem was solved by some authors such as 
Brewster and Zidek [4] as well as Hodges and Lehmann 
[5]. 

3. Improved Estimators 

The problem remains invariant under the 
transformation group A under which 
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where Pℜ∈> βα ,0  and Γ  is a p×p orthogonal 
matrix. It follows that any nonrandomized A-invariant 
estimator of τ  is of the form cT, for some constant c>0. 
Since A acts transitively on the parameter space, the risk 
function of cT, 
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is independent of the unknown parameters, where ρ (.) 
is the scale invariant low function. Then the optimum 
choice for c is derived from the equation 
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and for the loss function (1.1), c* is a multiplier of 
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2  [3]. 

Let H denote the subgroup of A obtained by requiring 
in (3.1) that 0=β  and that Γ  be a diagonal orthogonal 
matrix. Any H-invariant estimator is of the form φ (Z)T, 

where Z=(Z1, Z2, … , Zp)’ and == − iTXZ ii ,|| 2
1

1,…,p. 
We can see that the risk of such an estimator is 
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where )',....,( 21 pξξξξ =  and piii ,...,1,2
1

== −τµξ . 

Since we deal only with H–invariant estimators, we may 
assume without loss of generality that τ =1. 

On the other hand, 2
iX  has a chi-squared distribution 

with 1+2Ki degrees of freedom, where Ki denotes a 
Poisson random variable with mean 2

2
1

ii ξλ = , and the 

sKi
, , i=1,…,p, are independent of each other and of T. 

Let K=(K1,K2,…,Kp), the joint density of T and Z 
conditional on K=k= (k1,k2,…,kp) is 
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Now since the loss (1.1) is strictly convex, it 
uniquely minimized at )(zkφ  satisfying 

{ } 0,|))((' === kzTTE k KZZφρ  

which is equivalent to 
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Now, for any estimator φ (Z)T define )(* zφ  = 
min )},(),({ zz oφφ then let 

{ }

{ }.),|)((

],|))(([);(

KZZ

KZZ

φ

φρφξ

ξ

ξ

RE

TEER

=

=
 

Now, either )()(* zz φφ = , then =),|)(( * kzzφR  
),|)(( kzzφR  or )()()(* zzz φφφ <= o , then since 

),|( kzφR is strictly convex, and )()( zzk oφφ ≤  for all 
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k, it follows that ),,|)((),|)(( * kzzkzz φφ RR <  see 
Figure 2.1, which is also cited in Maatta and Casella [6] 
in the univariate set up. Therefore, for any 
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find )(zoφ  in this case, note that 
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 0 kφ  ∗φ  φ  φ  

Figure 3.1. 
 

 
So, using the transformation ),||||1( 2z+→ tt we can 

see that 
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where )||||1/(~ 2z+= cc , so the minimum is attained at 
)||||1/()(~ 2zz += oc φ . For finding the value of c~ , using 

(2.2), c~  must satisfy the following relation 
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the above discussion Tc*  is dominated by 
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