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Abstract

A two-factor experiment with interaction between factors wherein observations
follow an Inverse Gaussian model is considered. Analysis of the experiment is
approached via an empirical Bayes procedure. The conjugate family of prior
distributions is considered. Bayes and-empirical Bayes estimators are derived.
Application of the procedure is illustrated on a data set, which has previously been

analyzed by other authors.

Keywords: Inverse Gaussian; Factorial experiments; Bayesian analysis and empirical Bayes

analysis

1. Introduction

There are many types of experiments setups in
science and technology where the mormal theory is
inappropriate for the analysis of factorial experiments.
One important class is related to the highly skewed
nature of the data, which cannot be removed by the
usual transformations.. Alternatively, the Inverse
Gaussian family of distributions is flexible enough to
provide a suitable model for these types of data.
Tweedie [16] pioneered work in providing an analogue
to analysis of variance for nested classifications
concerning observations from an Inverse Gaussian
model. Despite the quite striking resemblance between
normal analysis of variance and what he called, the
Inverse Gaussian analysis of reciprocals, in one-way or
nested classifications, the possibilities of developing
analogous results for other classifications appeared to be
limited, Folks and Chhikara [8], and Chkikara and Folks

[7]. However, Shuster and Muira [15] succeeded in
providing tests for balanced two-way classifications.
Their approach has the disadvantage that it requires
many observations in each cell. Such a requirement is
hard to fulfil in most experiments. Bhattacharyya and
Fries [4] treated the analysis of two-factor experiment
with no interaction and obtained explicit solutions to the
likelihood equations. They also proved asymptotic
consistency and normality of their estimators. Few
authors have contributed to the Bayesian analysis of the
Inverse  Gaussian  distribution.  Banerjee  and
Bhattacharyya [5] focussed on distributional results
concerning Bayesian inference with an Inverse Gaussian
model. Achcar et al. [3] also used a Bayesian approach
for this family; some similarities to the normal model
were found. Banerjee and Bhattacharyya [5] modeled
the interpurchase time of a commodity with an Inverse
Gaussian model, while employing a natural conjugate
prior for population heterogeneity.
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Achcar and Rosales [1,2] are the only records in print
for Bayesian analysis of two-factor experiments under
an Inverse Gaussian model. They actually follow the
approach presented in Bhattacharyya and Fries [4],
assuming a non-informative prior density. Conse-
quently, as one expects, because of heavy reliance on
the likelihood, their results are not much different from
those obtained by the maximum likelihood method of
estimation. In this paper, we present an empirical Bayes
analysis of two-factor experiments under an Inverse
Gaussian model. This model is described in section 2.
Section 3 considers the Bayesian analysis relative to two
different conjugate priors. The main results are obtained
in section 4. A real-life example previously analyzed by
Shuster and Muira [15], and later by Achcar and
Rosales [2], is reworked in section 5. Since any factorial
experiment can be cast into a two-factor experiment by
using a composite factor in place of all factors except
the last one, the results of this work can be used in the
more complicated designs. Section 6 contains some
comments and suggestions for further research.

2. The Model

Consider an experiment with two factors, factor A
with I levels indexed by i, and factor B with J levels,
numbered by j, with each treatment combination being
repeated n times. Observations from this experiment,
denoted by y; are assumed to follow an'Inverse

Gaussian model /G(6,, 1),

ijo

Yy ~ 1G(Gy,2), i=1,...L, j=l,.. 41, k=L,. ..

i

For each i, j, the random variables yy; are i.i.d. with

mean 6,

;7> and shape parameter A. The two-parameter

Inverse Gaussian density is

1
= 2
{2127y} 2 expi=A (v = 05)"/ 2y, 63

Yig >0, 0; >0, 1>0,i=1,....1j=1,...J, k=1,....n.

@.1)

In a two-factor experiment with interaction, each cell
mean is assumed to be inversely proportional to the
drift, while the drift is considered as the sum of factor
main effects (o,p) and their interaction (y). Thus, it is
assumed that
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91]1 =Wtoi+Bi+y, =L L=l (2.2)
I J 1 J
i= j= i= Jj=

Here, p denotes the reciprocal of each cell mean
when there is no drift. To incorporate the constraint
(2.3) in the model, we can define the IJx1 parameter
vector @ as

cp{ﬂ

=[u.a.p.y]

A, 01

B ~,,3]_1‘71 1>+ -,71,J—1‘~ . -|71,1,J,- . »71_1,‘]_1@

(2.4)

Then, the likelihood for the whole experiment can be
written as

L@Aly) o« M2 expi=-A|R.,, ~2n@'d + n@ M®)/ 2}
2.5)

In (2.5); the convention used by Bhattacharyya and
Fries [4] has been utilized, where we have set

y:|:y1117"°’y1lk""’ylln7'”’yz'j1""7

yijks--'9yijn>'~~ayljla""y1./k""»yIJn:| >

Hi;l:y+ai+ﬂj+}/ij:)(yd),

n
Vi =D I,
k=1

D:diag{y11.,y12<“'ayu.}’ M = X'DX,

1 J
-1
d=22 Xy Rik=Yy
i=1 j=1

Summing over an index is shown by a plus sign
while averaging is denoted by a dot. Thus, we shall use
Ri++’R+j+’Rl'j'+’R+++aRi_,»R,j,sR;’j, 5 and R as sums

and averages, respectively. We intend to use a conjugate
prior for 4 and ® . The following priors have been
proposed, see Chhikara and Folks [7], and Banerjee and
Bhattacharyya [5]. The prior for 4 is chosen from the
gamma family and given A, a normal prior is assumed
for @ . Thus,

2.6)

() o 2 expi-bA 12}, Aab>0,

and, given A, elements of @® are considered
independent with either of the following two priors.
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Case 1. Unrestricted Parameter Space

In the unrestricted case, the prior distribution for ®
is

@], ~N(n,17'A) 2.8)
with
n:[nl,...,nu], Azdiag{dlz,...,é‘%]}.

Then, the posterior is

-1
q,(®@,2]y) < [¥]2 2" Texp{-2[0, () + 0, (®)]/ 2}
2.9)

where
¥ =nAM+A)7,
v=a+nm+1)IJ/2,
O,(W) = Rysr +b+M A - 0>,
n =AM +1)"(nAd + ),
0,(®) = (@ -y~ (®—1*).
It is evident from (2.9) that
7(Ay) e 2*exp{-20,m)/2}, 2>0,

0,(m) >0,

(2.10)
k=nlJ+2a)/2,

and

1

,(®|2,y) o |/r1l1!|7 exp{~2 0, (®)/2}. @2.11)

That is, conjugacy holds. Therefore, we can write

1
q,(@[y) v, eRY,
@ [0, +0,@)]
_Qa+nl))+1J (2.12)
® — n*)' T —n* 2
Ll @ ) @-n)
2a+nlJ
with
z: Ql('l) v
2a+nlJ

which is a multivariate T-type distribution, with
2a+nlJ > 2 degrees of freedom.
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Case 2. Restricted Parameter Space
Strictly speaking, one should have ¢ = x>0. This

restriction on ¢, is observed in the prior assigned to ¢, .
Thus,
considered for ¢, which has density

a normal distribution truncated at zero is

-
q> (¢1‘/1)°C/1;[51N(/1;—771/51)} exp{—/l((bl—nl)z 1257},

¢ >0 (2.13)

and the remaining is as in Case 1. In (2.13), N(.) Is the
standard normalCdf. The restriction imposed on ¢,

results in a posterior proportional to (2.9).

3. Bayes Estimates

In cased, from (2.10) we have

EQ"y) =[2/0,(w]" [Tk +m)/T (k)] G.D

which provides the Bayes estimate of A relative to
the squared error loss:

Ap=EQAly) = (nlJ +2a)/ Q|(n), (3.2)

v, =Var(Aly) =2Qa+nl))/[0,(m)]. (3.3)

Upon using (2.12), we arrive at

D, = E(<I)|y) =t =AM+ 1) "' (nAd +1), (3.4)
_ 1))

Vg =Var(®ly) = —Z(a Dl (3.5)

For case 2, the posterior moments of A remain
unchanged from those for Case 1. However, for @, the
restriction on ¢, renders results on ® different from

those in (3.4) and (3.5) for Case 1. To this end, let ¢,
n and ¥ be partitioned as
‘1’12}
¥

| o« m* ¢ Y
n= (2)9" = @, ®= (2)’T:
n n* () k 31

W'y, and [P =y, (¥, |, Oy (P) in (2.9) can
be written as

0,(®)=y/1 (4 —m*)’
+((I)(2) %) ¥oh 1((1’(2)_71*2. 0

virtue of facts

(3.6)
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where

0%y, = E@INpu 2 y) ="+ iy (i =n) ¥y B.7)
and

Var(@®g, A,y) = 27 ¥ - (3.8)

From (3.7), upon taking successive expectations with
respect to ¢, and A, we obtain

o= E@Cly) =1 +| £ -l |yil wa G9)
and

Vs = Var(q)(2)|y)

=[o, /201 + EVar(p |1l w2 w2

+ Var[E(¢] /1»)’)]‘//1_12 L SR SPF

(3.10)

The posterior moments of ¢, are substituted in (3.9)
to obtain the Bayes estimators, (See Appendix1):

s> = EB\|y) =, * 40210y, 0 ()] W, (3.11)
and

Viga=Var(gly)

=0.45p,, 0, () /(k —1)
+0.045y,, 0, (W1 1/(k - )= W]
~0217, [y, 0, (W] W,

with

W =[(k—0.5)/k]"?. (3.12)

Now, we substitute the posterior moments of ¢, into

(3.9) to obtain a simpler form as:

@25 =1 D +{021Wy 0,1 Wy, (3.13)

and

Vopr=

[0,(0)/ 20k = 1)][W22—- 0.09(k - YW w1,

« _ 172 _
+021Wrllpilo, ] Wi v, (3.14)

The expressions (3.11) and (3.14) provide the Bayes
estimates relative to the restricted prior given in (2.13).
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In a fully Bayesian analysis, one can utilize MCMCs
(Markov Chain Monte Carlo) methods to obtain the
posterior moments of interest. We do not pursue such a
path, because we have exact formulas for Case 1 and an
approximate formula for Case 2, so we can dispense
with such methods.

As long as the prior distribution can be assessed,
Bayes estimators, either (3.2)-(3.5) or (3.11)-(3.14)
could be put into application for two-way
classifications. Unfortunately, the situations where these
priors can reasonably be assessed are rare. In such cases,
we can utilize an empirical Bayes procedure to estimate
the prior distributions from the data. By this, we borrow
strength from Bayesian logic and objectivity from
classical method.

4. Empirical Bayes Estimates

To estimate the prior parameters from the marginal
distribution of the observations, one can use any method
of estimation. Two more common methods are the
method of moments and maximum likelihood. To
provide explicit expressions for estimates of a, b, 7,

and A from the data, y, we shall first use the method of
moments. To this end, we have from Chhikara and
Folks [7],

n
0 o a2
VU':Z(Yy‘/lc_Yij.l)N;L Xnt-
k=1

Thus,
E(vy) = E[EWlA]=(n-1b/2(a~1),

Var(vy) = Ear (v ]+ VarlEQ 5|12)

=(n—1)(n—-3+2a)b*/4(a-1)*(a-2).
Let
I J I J
V=SSV, sE=Y > v i -1).
i=1 j=1 i=l j=1

And let C=S,/V be the sample coefficient of

variation for V;;. Then,

ag =[2(n-1)C* +n-3]/[(n-1)C? -2],

by =2(ay -1V /(n-1) 4.1

which are valid positive estimates of @ and b for n>1, if
one has C?>2/(n—1), otherwise, take a and b equal to

zero, i.e., use a noninformative prior. For estimation of
n and A, we need 21J equations. These are provided by
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the following considerations. Let Z,,i=1,...,n, be i.i.d
distributed as IG(@,nA). The
distributional relations between Z;, Z, and Z;' have

been found in Chhikara and Folks (1989). That is,
Z ~1G(0,nA) and Z . ! has mean and variance as stated

random variables

below:
zi'~lo a7 = Bz, (10) 4207 = Var(z7Y)].

Let define the sample means R;;.,

as in Section 2. Moreover, define the corresponding
sample variances as

R., R, and R.

S2="(Rj—Ry)* /n(n=1),
k=1

i=1

$5=2(Ry.—R;)* /1 -1),

D (Rj—R) I =D,
Jj=1

=33

i=l j=1 k=1

J

n

(R — Ry)* / nlJ (nlJ —1) .

Now apply the above general distributional rules on
sample means and then obtain their two distributional
moments for given values of 4 and ® . Next find the
marginal moments by taking expectations with.respect
to prior distributions of A and @®. The moment
estimates of m and A are the solution of this system of

equations (See Appendix 2) along with (4.1). The
estimates are:

77? =R._—bo/2(ap—1),
520=2(ag ~1)§2/ by —1inlJ
’ 4.2)
—by[2(ay —V)+nl ay —1)(ag -2).
For i=1,..,1-1,
0 0
Nin=Ri.—1m —by/2(ag—1)=R; =R,
51‘2+1,0 =2(ag 1) 8} /by ‘(’7?+77?+1)/"J_5?

—bo[2(ag —1)+nJ)]/ 2nJ(ag —1)(ag —2).
(4.3)

For j=1...,J-1,

77(])+‘/':Rj _77?_[90 /Z(ao _1):Rj_R B

Meshkani

65

Vol. 14 No. 1 Winter 2003

811 10=2ay =) S} /by = + 1y, )/ nl = 51
—by[2(ag =) +nJ ]/ 2n1(ay —1)(ay ~2). (4.4)

Finally, for i =1,..../ —1,and j=1,...,J —1,
’7%+[(J71)+_/ = Rl'j-_ﬂ?_ﬁ?ﬂ _77(1)+j_b0 /2(ay—1)
=Rj—Ri.—RJ*+R.,
5%+i(]—1)+j,0 =2(ap —1) Sizi/bO
- [77?+’7?+1 +’7(1)+_/ +’7(1)+;(J71)+_/]/”
_(512,0+51'2+1,0+5%+j,0)

—by[2(ag — 1) +n)]/ 2n(ay —1)(a, —2)
(4.5)

which provide

770 = [n?»ngssﬂ?‘]} 5andA0 = diag{5i0,5%,0,-"95%},0}-
(4.6)

Now, we substitute these estimates into (3.2) and
(3.5) to obtain the empirical Bayes estimate relative to
unrestricted prior distribution. This gives us

App = (nlJ +2ay)/ O, (’70) > 4.7)
@, =AM+ A +7%) =5 (4.8)
Posterior variances are estimated by

2
Var(Ay) = 2(2a, + nIJ)/[Ql (770)} (4.9)

and

var(@|y) =[o,(r") 12k -],
w0 = [naar + (a0, (4.10)

In Case 2, the only difference in prior is that ¢, hasa

truncated normal prior. Accordingly, we should alter the
posterior and the marginal moments for differences in
moments of ¢, (See Appendix 1). In this case,

E(¢|/1) =, +0317"%5,,
and

Var(¢1‘/1) =091 17152+ 037,475,
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To account for this difference, the previous moment —by [2(a0 -D+nJ ]/ 2nJ(ay —1)(ay—2)
equations should be modified accordingly. Omitting the
details, which can be found in Meshkani [9], we shall —512+2k(a0)[§1k(a0)—77 1]51 (ag—1)/b,
give the final results. ~
Let —26,[k(ay —1) - k(ay)].
k(ag) =021a(ag)bY?, w(ay) =T(ay—0.5)/T(ay), For j=1..J-1,
by [ )
= 2(ag—D+nlJ|. N
"o Az[](ao 12 —2)| P D 81y =2ay =1S3/by
Then, _[771+771+j+51k(a0 _1)]/’1[
m=R.—by/2(ay—1)—k(ay)o;, —by[2(ay —1)+nl]/2nl(ay —1)(a, —2)
and = 514 2k(ag)[5 k(a9) = 71]5 (ag = 1)/ by
§* =my +[by /2(ag = D]} 225, [k(dg=1~ k(ap)].,
b
J{ y 2nlJ (a, —1)}['71 +k(ao =13 ] and finally,fot i =1,...,/—1,and j=1,..,J -1,
—k*(a) 7 8 iy = 2ag =D S;/b,
Absorbing 1, into S? leads to the quadratic - [771 01+ 1 10 7] i T o1 k(a0 — 1)]/ nl
equation
—by|2(ay —1)+
A5?+B5+D=0 ol2(ao -1y ”]An(ao—l)(ao—z)
with _[512+51'2+1+5§+j]
A=1-4(ay - D)k>(ay)/ by, +2k(ag)[5 k(ag) ~ 77,5, (ag 1)/ by
B = k(ag){(1+2nl))[o(ay 1) — w(ay)]/ nlio(ay) ~25,[k(ag 1)~ k(ap)].

+2(ag —DR.../ by} —1, Thus, we have 0 =[77,,....77 ], A= diag{512,...,5fj},

and which provide the respective empirical Bayes estimates:
D=(R.../nl))+by(ay +nll)/2nlJ(ay, —1)(a, —2) /1532=(”IJ+200)/Q @) @“.11)
1
—2(ay —1)S? /b,.
and
Thus, we obtain an estimate for 512 as
Var(2y) = 2(nlJ +2ay) /[0, (W), (4.12)
(-B/24)* " if  B*-44D>0 ~ . 2
5= . bes =7, + 0210057, 0, ()] (4.13)
D/ 4 if  B*—44D<0
and
This gives mM,=R_—by/2(ay-1)~kys5,, while Var(@ly) =
other elements of M being equal to those given for Case
1. However, for i = L.,/ ~1, 0.0457,, 0, (D[ 1k ~1)— 0 (k)]
~ ok ~ ~ /2
51 =20ay =15/ by +0.2177; (b7, 0, ()]
—[7 47+ 51 k(@ =) ]/HJ (4.14)
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with
q= [;7}‘,77*(2)]: [nZM + ﬁl [nZd + ﬁ],

§ :[nzM@—l]{‘f“ ‘1’}
Yo Yo

Moreover,

~ ~ ~ |1/2
<1>5§§2=n*<2>+{0.21w(k)[wlfgl<n>] N, (415)

Var((I)|y) =
|:Ql (1 2k - 1)} [‘I’zz —0.09(k —eo” (k) § 5,777, ‘I’n]

1/2
+O210(0T | FHOM | oyl (4116)
Although we have used the method of moments to
reach explicit solutions, we could have alternatively
used the maximum likelihood procedure to obtain
estimates of a, b, and A. This method needs

numerical maximization which can be done by usual
routines. Here, we only outline the procedure and leave
the detail for practical data analysis. From (2.5)-(2.8),

£=1U(y

a,b,n,A)
= K{J': [ﬂv“b“ A /r(a)]exp{—/l 120,(W)}

«fexp- 2120,

_D(a+niJ/2) ¥
I'(a)

(2b)¢
|A|1/2 [Q1 (n)]nIJ/ZJra

Maximizing /(y|a,bsm,A) with respect to a,b,m and
A would provide the maximum likelihood estimates,
denoted by a,b,7,and A. Applying them in (3.4) and
(3.5) would result in empirical Bayes estimates based on

the maximum likelihood procedure. Again, if we
observe the restriction on ¢, we shall have the

corresponding results. Let these results be expressed as

G g = (MAM + 1) (nAd +7), 4.17)

Var (®@ly) = [0, () /2(k 1) ¥, (4.18)

with
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¥=mnAM+AH

The above derivation remains valid for the 2-factor
ANOVA model without interaction, as well as for one-
way ANOVA. In these cases, one only need to reduce
the order of the vector of parameters and the design
matrix, according to the model used and follow the
above procedure.

5. An Example

To illustrate our proposed estimators and compare
them with other estimators, we analyze an experiment
originally reported by Ostle [10] and analyzed by
Shuster and ‘Muira [15], and later by Achcar and
Rosales [2]. Data in Table 5.1 have resulted from a
randomized 2x5 layout with 10 replicates in each cell.
The responses consist of the impact resistance of 5
kinds of <insulators to shocks when they are cut
lengthwise or /‘widthwise. There are 10 replicates for
each combination.

Maximum Likelihood Estimates

It can be shown that the maximum likelihood
estimates are

OML)=M"d, d =[10,0,...,0],

AMLY=1J/[nR_—d'M'd]
whose large-sample variances are
Var[(i)(ML)} =AM,
) . 2
Var[l(ML)} =2(nlJ)™ [A(ML)} ,

Cov[(i)(ML),/i(ML)} =0.

In this example, the diagonal elements of D are given
in the last column of Table 5.1, and X' is

1,4 1 1,4 1

' 1 -1y -1
X' = 1’4 1'4

Iy —-1a Is -4

Ia —1a —14 14

which yield the estimates and their standard errors
(S.E.) given in Table 5.2. The asymptotic 95 percent
confidence intervals (CI) are also provided in Table
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Table 5.1. Observations from a 2*5 factorial experiment with 10 replications

k— 1 2 3 4 5 6 7 8 9 10 Mean

()12 (vii)
(1,1 1.15 084 088 091 086 088 092 0.87 093 095 0919
(1,2) 1.16 0.85 1.00 1.08 0.80 1.01 1.14 0.87 097 1.09 0.999
(1,3) 079 0.68 064 072 0.63 059 081 0.65 064 0.75 0.690
(1,4) 096 0.82 098 093 0.81 079 079 086 084 092 0.870
(L,5) 049 0.61 059 051 053 072 067 047 044 048 0.551
2,0 089 0.69 046 085 0.73 067 078 0.77 080 0.79 0.743
2,2) 08 1.17 1.18 132 1.03 084 089 0.84 1.03 106 1.022
2,3) 052 052 080 064 063 058 065 0.60 071 059 0.623
2,4) 08 1.06 081 097 090 093 087 0.88 <089 . 0.82 0.899
2,95 052 053 047 047 057 054 056 055 045 060 0.526

Table 5.2. ML Estimates of 4, ® and their asymptotic 95 Table 5.3. Empirical Bayes estimates

percent Confidence Intervals Prior Unrestricted Restricted
Parameter MLE S.E. 95 Percent CI  CI Length Parameter Estimated S.E. Estimated S.E.
A 0.98 0.09 0.8 1.16 0.36 A 0.7973 0.1057 1.2198 0.1616
u 1.34 0.82 -0.27 2.95 3.22 u 1.1502 0.2324 0.9858 0.1462
oy 0.04 0.82 -1.57 1.65 3.22 04y -0.0004 0.1302 -0.0006 0.1239
b -0.13 1.58 -3.23 2.96 6.19 b 0.0216 0.2440 0.0177 0.2406
B -0.35 1.47 -2.27 2.53 4.80 b -0.0555 0.3223 0.0001 0.3131
bs 0.18 1.72 -3.19 3.55 6.74 B 0.0212 0.3733 0.0923 0.2107
N -0.21 1.54 -3.23 2.81 6.04 n -0.0467 0.3193 -0.0001 0.1025
711 -0.09 1.58 -3.19 3.01 6.20 711 0.0005 0.1781 -0.0014 0.3202
i 006 147 294 282 5.76 - 0.0012 02324  -0.0003  0.1422
713 -0.03 1.71 -3.38 3.32 6.70 713 -0.0001 0.2392 0.0005 0.1552
V14 0.06 1.54 -2.96 3.08 6.04 V14 0.0016 0.2362 -0.0022 0.1471

Table 5.4. The 95 percent credible intervals for Empirical Bayes estimates

Prior Unrestricted Restricted
Parameter 95 Percent CI CI Length 95 Percent CI CI Length
A 0.5901 1.0044 0.4139 0.9031 1.5365 0.6334
U 0.6947 1.6057 09110 0.6992 1.2724 0.5732
ay -0.2556 0.2548 0.5104 -0.2434 0.2422 0.4856
b -0.4566 0.4998 0.9564 -0.4539 0.4893 0.9432
i -0.6872 0.5763 0.5950 -0.6136 0.6138 1.2274
b -0.7105 0.7529 1.4664 -0.3207 0.5053 0.8260
N -0.6725 0.5721 1.2516 -0.2010 0.2008 0.4018
711 -0.3486 0.3496 0.6982 -0.6290 0.6262 1.2552
Y12 -0.4543  0.4567 0.9110 -0.2790 0.2784 0.5574
713 -0.4689 0.4687 0.9376 -0.3037 0.3047 0.6084
V14 -0.4614 0.4646 0.926 -0.2905 0.2861 0.5766
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(5.2). It is clear that except for A no parameter can be
taken different from zero at 5 percent level. However,
only the constant p is different from zero at 10 percent
level. But, due to wide confidence intervals one should
feel uncertain about these inferences. Better inferences
are possible by the empirical Bayes procedure presented
below.

Empirical Bayes estimates of @ and b are a,=6.95

and bo =0.26, respectively. The estimates of the model

parameters for each of the two cases (unrestricted and
restricted) along with the standard errors are shown in
Table (5.3). In Table (5.4), the 95 percent credible
intervals (CI) based on the marginal posteriors are
given. Again, we observe that only A and p are

inferred to be different from zero at 5 percent level.
Although we have reached the same conclusion as the
one relative to MLE, but here we have much smaller
standard errors, which make the inference more precise.
In fact, comparing Table (5.2) and (5.3), we note a
striking consequence of exploiting the empirical Bayes
procedure. The credible intervals in both cases
(unrestricted and restricted) are very much shorter than
the corresponding confidence intervals given in Table
(5.2). The only exception is the intervals for A which
have become somewhat longer for the empirical Bayes
procedure.

There are various ways to check the adequacy of
proposed model. They include Lack of fit criteria and
predictive distribution, to name a few. We. shall not
discuss such methods for the sake of brevity and refer to
standard errors of estimates and their corresponding co-
nfidence intervals as determinants of model adequacy.

6. Some Comments

We have proposed an_empirical Bayes procedure for
analysis of the data from a two-factor experiment when
they are assumed tor follow an Inverse Gaussian
Distribution. Conjugate’ priors have been used. The
reasons are mathematical tractibility and “objectivity”
requirements as expounded in Robert [12]. The
posterior distributions have been used as the basis of
any inference about the factor effects and their
interactions. Though not worked there, one could have
utilized various alternative priors like Jefferys’,
reference and diffuse priors. Each alternative merits a
separate article. In a data analytic effort, it would be
useful to try such alternatives in hope of finding the
“best” prior. However, this goal has not been of prime
interest in this work. Consequently, we have confined
ourself to the conjugate Priors.
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Appendix 1

Observe that from(2.11), we have
0G4y a7y | P expi=Ay (- )7 123,
¢,>0,

which is a normal density truncated at zero. For this
distribution,
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E(¢1‘ﬂ- ,¥)= 771*"'(/1_1'//11)1/250
with
o= (P[Ul */(/1_1‘//11)1/2JN[771 */(ﬂ_ll//ll)l/ﬂ

where ¢(.) is the standard normal pdf and N(.) is its cdf,

2,¥)=2"wy, [1 - 602]+ m* a’(/l_l'//11)1/2~

Var(¢,

These moments, however, are too complicated to be
useful for estimation purposes. To simplify them, we
observe that @(x) = @(x)/ N(x) is a smooth decreasing
function of x. In the literature there are a host of
approximations to N(x) (Patel and Read [11]), which
can be used to approximate @(x) with desired

precision. Here, we choose to use the simpler one due to
Shah [14],

05+x(44-x)/10 0<x<2.2,
N(x) = 0.99, 22<x<2.6,
1.00 x22.6.
Consequently,
2Q2-x) 0<x<22
o(X) =15+ (4.4-x)
0, x>22

In our problem, 0 < x <o and 0 <‘@w(x) <0:8.. Thus,
we can approximate @(x) by its average value, which is
about 0.3. Of course, if one‘has a better guess of

X=1m >l</(/‘L71‘//11)1/2
obtained. Using this approximation, we have

E(¢1 |/1» y)= m * +0-3(/171 Vi 1)1/2

and

, a closer approximation could be

Var(g,|A,y) = 09117y, +0.35,* (17w, )"?

Now, we take expectations with respect to the
posterior distribution of A and obtain the Bayes
estimate

Pigr = E(¢1| y)= 7]1*+0-21W[‘//11Q1(ﬂ)]“2

and
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Vg |y)=0.45y,,0,() /(k-1)

+0.045://11Q1(n)[1 1/(k—1)—W2]

+0.21p,* [‘//1 194 (Tl)]l/2 Ww.

Appendix 2
Note that

(Rl ®)~[p5'+ 271, (o) +247%],

(Ry 4 @)~ [07+ asmA0,) " +2(na) ],

(R @)~ (i1 g+ 27 (1)) (et g+ a2y,
(R A, @)+ pY4A . (nAD) ™ (ut B+ @027 D)7,

(R [2.®)<uvs 27 (nadd) g+ a1y,

To obtain the marginal moments, we take
expectations successively with respect to 4 and ®@ . In
Case 1, we obtain for i =1,...,7, j=12,...,J —1:

Ry~ A0+ ey H 0y F iy 07 2(a=1),

b|:771+7]1‘+1+771+J+’71+i(J—1)+_/
+n(512+5l.2+1+5f+_/+5§+i(J_l)+i}/2n(a—1)},
Ri. ~{(n+ 1, +b/2(a=1),
b[’h 1 (O + 5i+1)]/ 2nJ(a-1),

+b*[2(a-1)+nJ]/ 4nJ(a-1)*(a-2)]},

R ~ 0 +n,+b/2a-1),
b[’?] +p, J+nl(O7 + 5”_/)]/ 2nl(a-1),

+b2[2(a—-1)+nl]/ 4nl(a—1)*(a-2)]},

R.~{(n+b/2(a=1),
by, +nts 52|/ 2n1s (@ -1y,

+b*[2(a-1)+nlJ ]/ 4nlt (a—1)* (a-2)}.



