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Abstract 

A two-factor experiment with interaction between factors wherein observations 
follow an Inverse Gaussian model is considered. Analysis of the experiment is 
approached via an empirical Bayes procedure. The conjugate family of prior 
distributions is considered. Bayes and empirical Bayes estimators are derived. 
Application of the procedure is illustrated on a data set, which has previously been 
analyzed by other authors. 
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1. Introduction 

There are many types of experiments setups in 
science and technology where the normal theory is 
inappropriate for the analysis of factorial experiments. 
One important class is related to the highly skewed 
nature of the data, which cannot be removed by the 
usual transformations. Alternatively, the Inverse 
Gaussian family of distributions is flexible enough to 
provide a suitable model for these types of data. 
Tweedie [16] pioneered work in providing an analogue 
to analysis of variance for nested classifications 
concerning observations from an Inverse Gaussian 
model. Despite the quite striking resemblance between 
normal analysis of variance and what he called, the 
Inverse Gaussian analysis of reciprocals, in one-way or 
nested classifications, the possibilities of developing 
analogous results for other classifications appeared to be 
limited, Folks and Chhikara [8], and Chkikara and Folks 

[7]. However, Shuster and Muira [15] succeeded in 
providing tests for balanced two-way classifications. 
Their approach has the disadvantage that it requires 
many observations in each cell. Such a requirement is 
hard to fulfil in most experiments. Bhattacharyya and 
Fries [4] treated the analysis of two-factor experiment 
with no interaction and obtained explicit solutions to the 
likelihood equations. They also proved asymptotic 
consistency and normality of their estimators. Few 
authors have contributed to the Bayesian analysis of the 
Inverse Gaussian distribution. Banerjee and 
Bhattacharyya [5] focussed on distributional results 
concerning Bayesian inference with an Inverse Gaussian 
model. Achcar et al. [3] also used a Bayesian approach 
for this family; some similarities to the normal model 
were found. Banerjee and Bhattacharyya [5] modeled 
the interpurchase time of a commodity with an Inverse 
Gaussian model, while employing a natural conjugate 
prior for population heterogeneity. 
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Achcar and Rosales [1,2] are the only records in print 
for Bayesian analysis of two-factor experiments under 
an Inverse Gaussian model. They actually follow the 
approach presented in Bhattacharyya and Fries [4], 
assuming a non-informative prior density. Conse-
quently, as one expects, because of heavy reliance on 
the likelihood, their results are not much different from 
those obtained by the maximum likelihood method of 
estimation. In this paper, we present an empirical Bayes 
analysis of two-factor experiments under an Inverse 
Gaussian model. This model is described in section 2. 
Section 3 considers the Bayesian analysis relative to two 
different conjugate priors. The main results are obtained 
in section 4. A real-life example previously analyzed by 
Shuster and Muira [15], and later by Achcar and 
Rosales [2], is reworked in section 5. Since any factorial 
experiment can be cast into a two-factor experiment by 
using a composite factor in place of all factors except 
the last one, the results of this work can be used in the 
more complicated designs. Section 6 contains some 
comments and suggestions for further research. 

2. The Model 

Consider an experiment with two factors, factor A 
with I levels indexed by i, and factor B with J levels, 
numbered by j, with each treatment combination being 
repeated n times. Observations from this experiment, 
denoted by ijky  are assumed to follow an Inverse 

Gaussian model ),( λθ ijIG , 

~ijkY ),( λθ ijIG , i=1,…,I, j=1,…,J, k=1,…,n. 

For each i, j, the random variables ijky  are i.i.d. with 

mean ijθ , and shape parameter λ. The two-parameter 

Inverse Gaussian density is 

=),;( λθijijkyf  

}2/)(exp{)}2/({ 223 2
1

θθλπλ ijijkijijkijk yyy −−  

0>yijk , 0>θij , 0>λ , i=1,…,I, j=1,…,J, k=1,…,n.  

 (2.1) 

In a two-factor experiment with interaction, each cell 
mean is assumed to be inversely proportional to the 
drift, while the drift is considered as the sum of factor 
main effects (α,β) and their interaction (γ). Thus, it is 
assumed that 

γ ijθ +++=− βαµ ji
1

ij  i=1,...,I, j=1,...,J, (2.2) 

0
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ij γγ . (2.3) 

Here, µ denotes the reciprocal of each cell mean 
when there is no drift. To incorporate the constraint 
(2.3) in the model, we can define the IJ×1 parameter 
vector Φ  as 
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 (2.4) 

Then, the likelihood for the whole experiment can be 
written as 

[ ] }2/''2exp{),( 2/ ΦΦΦΦ MndnRyL nIJ +−−∝ +++λλλ
 (2.5) 

In (2.5), the convention used by Bhattacharyya and 
Fries [4] has been utilized, where we have set 
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ijXd
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, yR ijkijk

1−= . (2.6) 

Summing over an index is shown by a plus sign 
while averaging is denoted by a dot. Thus, we shall use 

RRRRRRR ijjiijji ..... ,,,,,, ++++++++ , and R...  as sums 

and averages, respectively. We intend to use a conjugate 
prior for λ  and Φ . The following priors have been 
proposed, see Chhikara and Folks [7], and Banerjee and 
Bhattacharyya [5]. The prior for λ  is chosen from the 
gamma family and given λ , a normal prior is assumed 
for Φ . Thus, 

0,,},2/exp{)( 1 >−∝ − baba λλλλπ , 

and, given λ , elements of Φ  are considered 
independent with either of the  following two priors. 
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Case 1. Unrestricted Parameter Space 

In the unrestricted case, the prior distribution for Φ  
is 

λΦ ~ ),( 1∆η λ−N  (2.8) 

with 

[ ] }.,...,{,,..., 22
11 δδηη IJIJ diag== ∆η  

Then, the posterior is 

[ ] }2/)()(exp{),( 21
12

1

1 ΦηΨyΦ QQq +−∝ −
−

λλλ ν

 (2.9) 

where 

,)( 11 −−+= ∆∆MΨ n  

2/)1( IJna ++=ν , 

**')( 11'
1 ηΨηη∆ηη −−

+++ −++= bRQ , 

)()( 1* η∆∆Mη ++= − dnIn , 

*).(*)'()( 1
2 ηΦηΦΦ −−= −ΨQ  

It is evident from (2.9) that 
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and 
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1
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That is, conjugacy holds. Therefore, we can write 
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 (2.12) 

with 

Ψ
η∑ +

=
nIJa

Q
2

)(1  

which is a multivariate T-type distribution, with 
2a+nIJ > 2 degrees of freedom. 

Case 2. Restricted Parameter Space 

Strictly speaking, one should have 01 >= µφ . This 

restriction on 1φ  is observed in the prior assigned to φ1 . 
Thus, a normal distribution truncated at zero is 
considered for φ1 , which has density 

},2/)(exp{)/()( 2
1

2
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112
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01 >φ  (2.13) 

and the remaining is as in Case 1. In (2.13), N(.) Is the 
standard normal Cdf. The restriction imposed on φ1  
results in a posterior proportional to (2.9). 

3. Bayes Estimates 

In case 1, from (2.10) we have 

[ ] [ ])(/)()(/2)( 1 kmkQE mm Γ+Γ= ηyλ  (3.1) 

which provides the Bayes estimate of λ  relative to 
the squared error loss: 

),(/)2()( 11 ηy QanIJEB +== λλ  (3.2) 

[ ]21 )(/)2(2)( ηy QnIJaVarV +== λλ . (3.3) 

Upon using (2.12), we arrive at 
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.
)1(2

)(
)( 1

1 Ψ
η

yΦ
nIJa

Q
VarVB +−

==  (3.5) 

For case 2, the posterior moments of λ  remain 
unchanged from those for Case 1. However, for Φ , the 
restriction on φ1  renders results on Φ  different from 
those in (3.4) and (3.5) for Case 1. To this end, let Φ , 
η  and Ψ  be partitioned as 
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Then by virtue of the facts 221.22 ΨΨ =  

12
1

1121 ΨΨ −
− ψ  and 1.2211 ΨΨ ψ= , )(2 ΦQ  in (2.9) can 
be written as 
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where 

ΨηyΦ 2111
1

11
)2*(

1
)2(
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)(),,(* ηφψλφη −+== −E  (3.7) 

and 
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1
)2( ),,( λλφ −=Var . (3.8) 

From (3.7), upon taking successive expectations with 
respect to φ1  and λ , we obtain 
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 (3.10) 

The posterior moments of 1φ  are substituted in (3.9) 
to obtain the Bayes estimators, (See Appendix1): 

[ ] ,)(21.0*)( 2/1
1111121 Wηy QEB ψηφφ +==  (3.11) 

and 
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with 
2/1]/)5.0[( kk −≅W . (3.12) 

Now, we substitute the posterior moments of φ1  into 
(3.9) to obtain a simpler form as: 

ΨηWηΦ 21
2/1

1
1

11
)2*(

22 })]([21.0{ QB ψ −+= , (3.13) 

and 

[ ][ ]ΨΨWΨη 12
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           [ ] ΨΨηW 12
1

1121
2/1

1
1

11
*
1 )(21.0 ψψη −−+ Q . (3.14) 

The expressions (3.11) and (3.14) provide the Bayes 
estimates relative to the restricted prior given in (2.13). 

In a fully Bayesian analysis, one can utilize MCMCs 
(Markov Chain Monte Carlo) methods to obtain the 
posterior moments of interest. We do not pursue such a 
path, because we have exact formulas for Case 1 and an 
approximate formula for Case 2, so we can dispense 
with such methods. 

As long as the prior distribution can be assessed, 
Bayes estimators, either (3.2)-(3.5) or (3.11)-(3.14) 
could be put into application for two-way 
classifications. Unfortunately, the situations where these 
priors can reasonably be assessed are rare. In such cases, 
we can utilize an empirical Bayes procedure to estimate 
the prior distributions from the data. By this, we borrow 
strength from Bayesian logic and objectivity from 
classical method. 

4. Empirical Bayes Estimates 

To estimate the prior parameters from the marginal 
distribution of the observations, one can use any method 
of estimation. Two more common methods are the 
method of moments and maximum likelihood. To 
provide explicit expressions for estimates of a, b, η , 
and ∆  from the data, y, we shall first use the method of 
moments. To this end, we have from Chhikara and 
Folks [7], 
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ij IJVVSIJVV

1 1

22
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And let VSC v /=  be the sample coefficient of 
variation for ijV . Then, 

( )[ ] ( )[ ]21/312 22
0 −−−+−= CnnCna , 

( ) ( )1/12 00 −−= nVab  (4.1) 

which are valid positive estimates of a and b for n>1, if 
one has ),1/(22 −> nC  otherwise, take a and b equal to 
zero, i.e., use a noninformative prior. For estimation of 
η  and ∆ , we need 2IJ equations. These are provided by 
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the following considerations. Let ,,...,1, niZi =  be i.i.d 
random variables distributed as ),( λnIG θ . The 

distributional relations between iZ , Z , and 1−
iZ  have 

been found in Chhikara and Folks (1989). That is, 
Z ~ ),( λnθIG  and 1−

iZ  has mean and variance as stated 
below: 

Zi
1− ~ [ ])(2)(),( 121111 ZVarZE ii

−−−−−− =+=+ λλθλθ . 

Let define the sample means ⋅ijR , ⋅⋅iR , ⋅⋅ jR , and ⋅⋅⋅R  

as in Section 2. Moreover, define the corresponding 
sample variances as 
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k
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Now apply the above general distributional rules on 
sample means and then obtain their two distributional 
moments for given values of λ  and Φ . Next find the 
marginal moments by taking expectations with respect 
to prior distributions of λ and Φ . The moment 
estimates of η  and ∆  are the solution of this system of 
equations (See Appendix 2) along with (4.1). The 
estimates are: 
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For 1,...,1 −= Jj , 
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 (4.5) 

which provide 
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2
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2
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0 δδδηηηη IJIJ diag=∆⎥⎦
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 (4.6) 

Now, we substitute these estimates into (3.2) and 
(3.5) to obtain the empirical Bayes estimate relative to 
unrestricted prior distribution. This gives us 

)(/)2( 0
101 ηλ QanIJEB += , (4.7) 

ηη 0*0010
1

)()( =+∆∆=Φ −+ nIMn
EB

. (4.8) 

Posterior variances are estimated by 
2

0
10 )(/)2(2)( ⎥⎦

⎤
⎢⎣
⎡+= ηλ QnIJayVar  (4.9) 

and 

[ ] ,)1(2/)()( 00
1 Ψ−=Φ kQyVar η   

[ ] .)(
11000 −−∆+∆=Ψ Mn   (4.10) 

In Case 2, the only difference in prior is that φ1  has a 
truncated normal prior. Accordingly, we should alter the 
posterior and the marginal moments for differences in 
moments of φ1  (See Appendix 1). In this case, 

,3.0)( 1
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and 
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1
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1
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To account for this difference, the previous moment 
equations should be modified accordingly. Omitting the 
details, which can be found in Meshkani [9], we shall 
give the final results. 

Let 

21
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Absorbing 1η  into 2S  leads to the quadratic 
equation 

02
1 =++ DBA δδ  

with 

[ ]
,1}/...)1(2

)(/)()1()21){((

,/)()1(41

00

0000

00
2

0

−−+

−−+=

−−=

bRa

anIJaanIJakB

bakaA

ωωω  

and 

./)1(2

)2)(1(2/)()/...(

0
2

0

0000

bSa

aanIJnIJabnIJRD

−−

−−++=
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and finally, for 1,...,1 −= Ii , and 1,...,1 −= Jj , 
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Thus, we have [ ]ηη ~,...,~~
1 IJ=η , { }δδ 22

1,...,~
IJdiag=∆ , 

which provide the respective empirical Bayes estimates: 
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and 
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with 

[ ] [ ] [ ]ηη ~~~)2(~,~~ 1**
1

* +∆+∆==
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dnIMnηη , 

[ ] ⎥
⎦
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~~~~~

2221

12111 ψ
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Moreover, 
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    ΨΨηη ~~~)~(~*~)(021 21
1
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2/1

1
1

111 ψψω −−
⎥⎦
⎤

⎢⎣
⎡+ Qk . (4.16) 

Although we have used the method of moments to 
reach explicit solutions, we could have alternatively 
used the maximum likelihood procedure to obtain 
estimates of a, b, η  and ∆ . This method needs 
numerical maximization which can be done by usual 
routines. Here, we only outline the procedure and leave 
the detail for practical data analysis. From (2.5)-(2.8), 

£= ),,,( ∆ηy baA  

[ ] )}(2/exp{)(/ 10

211 η∆K Qabav λλ −
⎩
⎨
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∞ −−  
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a
nIJa

+
⋅

Γ
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)2(

)(
)2/(

η∆
Ψ

 

Maximizing ),,,( ∆ηy baA  with respect to η,,ba  and 
∆  would provide the maximum likelihood estimates, 
denoted by η̂,ˆ,ˆ ba , and ∆̂ . Applying them in (3.4) and 
(3.5) would result in empirical Bayes estimates based on 
the maximum likelihood procedure. Again, if we 
observe the restriction on φ1 , we shall have the 
corresponding results. Let these results be expressed as 

),ˆˆ()ˆ( 1 η∆M∆ ++= − dnInEBLφ  (4.17) 

Var [ ] ,ˆ)1(2/)ˆ()( 1 ΨηyΦ −= kQ  (4.18) 

with 

11)ˆˆ(ˆ −−+= ∆M∆Ψ n . 

The above derivation remains valid for the 2-factor 
ANOVA model without interaction, as well as for one-
way ANOVA. In these cases, one only need to reduce 
the order of the vector of parameters and the design 
matrix, according to the model used and follow the 
above procedure. 

5. An Example 

To illustrate our proposed estimators and compare 
them with other estimators, we analyze an experiment 
originally reported by Ostle [10] and analyzed by 
Shuster and Muira [15], and later by Achcar and 
Rosales [2]. Data in Table 5.1 have resulted from a 
randomized 2×5 layout with 10 replicates in each cell. 
The responses consist of the impact resistance of 5 
kinds of insulators to shocks when they are cut 
lengthwise or widthwise. There are 10 replicates for 
each combination. 

Maximum Likelihood Estimates 

It can be shown that the maximum likelihood 
estimates are 

[ ]0,...,0,10,)(ˆ 1 == − ddMΦ ML , 

=)(ˆ MLλ IJ / [n dMd 1
...

−′−R ] 

whose large-sample variances are 

11)ˆ()(ˆ −−=⎥⎦
⎤

⎢⎣
⎡ MΦ λnMLVar , 

2
1 )(ˆ)(2)(ˆ ⎥⎦

⎤
⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡ − MLnIJMLVar λλ , 

0)(ˆ),(ˆ =⎥⎦
⎤

⎢⎣
⎡ MLMLCov λΦ . 

In this example, the diagonal elements of D are given 
in the last column of Table 5.1, and X′  is 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
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⎣

⎡

−−
−−

−′−′
′′

=′

11
11
1111

1111

4444

4444

44

44

II
II

X  

which yield the estimates and their standard errors 
(S.E.) given in Table 5.2. The asymptotic 95 percent 
confidence intervals (CI) are also provided in Table 
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Table 5.1.  Observations from a 2*5 factorial experiment with 10 replications 

k → 
(i,j) ↓ 1 2 3 4 5 6 7 8 9 10 Mean 

(yij.) 
(1,1) 1.15 0.84 0.88 0.91 0.86 0.88 0.92 0.87 0.93 0.95 0.919 
(1,2) 1.16 0.85 1.00 1.08 0.80 1.01 1.14 0.87 0.97 1.09 0.999 
(1,3) 0.79 0.68 0.64 0.72 0.63 0.59 0.81 0.65 0.64 0.75 0.690 
(1,4) 0.96 0.82 0.98 0.93 0.81 0.79 0.79 0.86 0.84 0.92 0.870 
(1,5) 0.49 0.61 0.59 0.51 0.53 0.72 0.67 0.47 0.44 0.48 0.551 
(2,1) 0.89 0.69 0.46 0.85 0.73 0.67 0.78 0.77 0.80 0.79 0.743 
(2,2) 0.86 1.17 1.18 1.32 1.03 0.84 0.89 0.84 1.03 106 1.022 
(2,3) 0.52 0.52 0.80 0.64 0.63 0.58 0.65 0.60 0.71 0.59 0.623 
(2,4) 0.86 1.06 0.81 0.97 0.90 0.93 0.87 0.88 0.89 0.82 0.899 
(2,5) 0.52 0.53 0.47 0.47 0.57 0.54 0.56 0.55 0.45 0.60 0.526 

 
 

Table 5.2.  ML Estimates of λ, Φ  and  their asymptotic 95 
percent Confidence Intervals 

Parameter MLE S.E. 95 Percent CI CI Length
λ 0.98 0.09  0.8 1.16 0.36 
µ 1.34 0.82 -0.27 2.95 3.22 
α1 0.04 0.82 -1.57 1.65 3.22 
β1 -0.13 1.58 -3.23 2.96 6.19 
β2 -0.35 1.47 -2.27 2.53 4.80 
β3 0.18 1.72 -3.19 3.55 6.74 
β4 -0.21 1.54 -3.23 2.81 6.04 
γ11 -0.09 1.58 -3.19 3.01 6.20 
γ12 -0.06 1.47 -2.94 2.82 5.76 
γ13 -0.03 1.71 -3.38 3.32 6.70 
γ14 0.06 1.54 -2.96 3.08 6.04 

 
 

Table 5.3.  Empirical Bayes estimates 

Prior Unrestricted Restricted 
Parameter Estimated S.E. Estimated S.E. 
λ 0.7973 0.1057 1.2198 0.1616 
µ 1.1502 0.2324 0.9858 0.1462 
α1 -0.0004 0.1302 -0.0006 0.1239 
β1 0.0216 0.2440 0.0177 0.2406 
β2 -0.0555 0.3223 0.0001 0.3131 
β3 0.0212 0.3733 0.0923 0.2107 
β4 -0.0467 0.3193 -0.0001 0.1025 
γ11 0.0005 0.1781 -0.0014 0.3202 
γ12 0.0012 0.2324 -0.0003 0.1422 
γ13 -0.0001 0.2392 0.0005 0.1552 
γ14 0.0016 0.2362 -0.0022 0.1471 

 

Table 5.4.  The 95 percent credible intervals for Empirical Bayes estimates 

Prior Unrestricted Restricted 
Parameter 95 Percent CI CI Length 95 Percent CI CI Length 
λ 0.5901 1.0044 0.4139 0.9031 1.5365 0.6334 
µ 0.6947 1.6057 0.9110 0.6992 1.2724 0.5732 
α1 -0.2556 0.2548 0.5104 -0.2434 0.2422 0.4856 
β1 -0.4566 0.4998 0.9564 -0.4539 0.4893 0.9432 
β2 -0.6872 0.5763 0.5950 -0.6136 0.6138 1.2274 
β3 -0.7105 0.7529 1.4664 -0.3207 0.5053 0.8260 
β4 -0.6725 0.5721 1.2516 -0.2010 0.2008 0.4018 
γ11 -0.3486 0.3496 0.6982 -0.6290 0.6262 1.2552 
γ12 -0.4543 0.4567 0.9110 -0.2790 0.2784 0.5574 
γ13 -0.4689 0.4687 0.9376 -0.3037 0.3047 0.6084 
γ14 -0.4614 0.4646 0.926 -0.2905 0.2861 0.5766 
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(5.2). It is clear that except for λ  no parameter can be 
taken different from zero at 5 percent level. However, 
only the constant µ is different from zero at 10 percent 
level. But, due to wide confidence intervals one should 
feel uncertain about these inferences. Better inferences 
are possible by the empirical Bayes procedure presented 
below. 

Empirical Bayes estimates of a and b are 0a =6.95 

and 0b =0.26, respectively. The estimates of the model 
parameters for each of the two cases (unrestricted and 
restricted) along with the standard errors are shown in 
Table (5.3). In Table (5.4), the 95 percent credible 
intervals (CI) based on the marginal posteriors are 
given. Again, we observe that only λ  and µ  are 
inferred to be different from zero at 5 percent level. 
Although we have reached the same conclusion as the 
one relative to MLE, but here we have much smaller 
standard errors, which make the inference more precise. 
In fact, comparing Table (5.2) and (5.3), we note a 
striking consequence of exploiting the empirical Bayes 
procedure. The credible intervals in both cases 
(unrestricted and restricted) are very much shorter than 
the corresponding confidence intervals given in Table 
(5.2). The only exception is the intervals for λ  which 
have become somewhat longer for the empirical Bayes 
procedure. 

There are various ways to check the adequacy of 
proposed model. They include Lack of fit criteria and 
predictive distribution, to name a few. We shall not 
discuss such methods for the sake of brevity and refer to 
standard errors of estimates and their corresponding co-
nfidence intervals as determinants of model adequacy. 

6. Some Comments 

We have proposed an empirical Bayes procedure for 
analysis of the data from a two-factor experiment when 
they are assumed to follow an Inverse Gaussian 
Distribution. Conjugate priors have been used. The 
reasons are mathematical tractibility and “objectivity” 
requirements as expounded in Robert [12]. The 
posterior distributions have been used as the basis of 
any inference about the factor effects and their 
interactions. Though not worked there, one could have 
utilized various alternative priors like Jefferys’, 
reference and diffuse priors. Each alternative merits a 
separate article. In a data analytic effort, it would be 
useful to try such alternatives in hope of finding the 
“best” prior. However, this goal has not been of prime 
interest in this work. Consequently, we have confined 
ourself to the conjugate Priors. 
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Appendix 1 

Observe that from(2.11), we have 
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},2/*)(exp{),(

1

2
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1
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1
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−−∝ −−

φ

ηφψλψλλφ yq
 

which is a normal density truncated at zero. For this 
distribution, 
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where (.)ϕ is the standard normal pdf and N(.) is its cdf, 
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These moments, however, are too complicated to be 
useful for estimation purposes. To simplify them, we 
observe that )(/)()( xNxx ϕω =  is a smooth decreasing 
function of x. In the literature there are a host of 
approximations to )(xN  (Patel and Read [11]), which 
can be used to approximate )(xω  with desired 
precision. Here, we choose to use the simpler one due to 
Shah [14], 
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Consequently, 
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In our problem, ∞≤≤ x0  and 8.0)(0 ≤≤ xω . Thus, 
we can approximate )(xω  by its average value, which is 
about 0.3. Of course, if one has a better guess of 

,)/(* 2/1
11

1
1 ψλη −=x  a closer approximation could be 

obtained. Using this approximation, we have 
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Now, we take expectations with respect to the 
posterior distribution of λ  and obtain the Bayes 
estimate 
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Appendix 2 

Note that 
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To obtain the marginal moments, we take 
expectations successively with respect to λ  and Φ . In 
Case 1, we obtain for Ii ,,1…= , 1,,2,1 −= Jj … : 
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