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Abstract

Multivariate reward processes with reward functions of constant rates, defined
on a semi-Markov process, first were studied by Masuda and Sumita, 1991.
Reward processes with nonlinear reward functions were introduced in Soltani,
1996. In this work we study a multivariate process Z(¢) = (Z1 ®,2, (t)), t>0,

where Z,(#),--+,Z,(¢) are reward proeesses with nonlinear reward functions

P> P, respectively. The Laplace transform of the covariance matrix, }(?), is

specified for given p,, -+, p,; and if they are real analytic functions, then the

covariance matrix is fully specified. This result in particular provides an explicit
formula for the variances of univariate reward processes. We also view ) (¢) as a

solution of a renewal equation.
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1. Introduction

Let {J(t),t >0} be a semi-Markov process with a
Markov renewal process {(J wo Ly ), n=0,1, 2,...}. The
state space of {Jn} is assumed to be N = {O, 1, 2,...,},

see [1], [2] and [13] for more details. Based on
{J(¢), £ >0}, a multivariate reward process may be

defined as Z(1)=(2,(1), 2, )z, (1)), where

z(0)= 2P T = T,)+ o (T (0). X (2)),

T, <t

n+l

(1.1)

where X(7) is the age process. Each function p; in (1.1)

is called a reward function, and is a real function of two
variables; p; : NxR— R where p;(j,r) measures the
excess reward when time 7 is spent in the state j. If
p;(j,7)=jr, i=L,..,p then the reward process Z(?)
becomes the multivariate reward process treated by
Masuda and Sumita 1991. In the case that p is of the

form

il )= g (", (12)
n=1
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i=1-

explicit formula for the mean vector EZ(t), t>0 is

where g;,, m; are given functions, m; <o an

given in [10]. Khorshidian and Soltani have treated the
asymptotic behavior of mean, variance and covariances
of univariate and multivariate reward processes as
t > oo, see [5], [6], [10] and [11]. They have shown

that E Z(1) > Cy+Cy(1), and Y (1) > Byt +Byt*, as
t > o, and obtained the related coefficients explicitly,
in terms of moments of the semi-Markov matrix.

In this work we explicitly determine Y (f) the

covariance matrix of Z(¢) for each >0 as a solution

of a Laplace transform equation when p; are as in (1.2),

m; <co and also view Z(I) as a solution of a renewal

equation for general We also determine the

Pi-
variances of univariate reward processes with nonlinear
reward functions.

For more details on semi-Markov processes see [1],
[2] and [13]. Concerning the asymptotic behavior of a

semi-Markov process see [3] and [4].

2. Notations and Preliminaries

Corresponding to a
{J(t),t>0},

probability from state i to the state j within the time
interval (0,x], i.e.,

semi-Markov ~ process
let Aij(x), measures the transition

A;(x)=P{J

n+l

=j, Ty T, <x|J =i} .

Let a;(x) denote the density of d;(x) and let

z AIJ > A =1-4 (x) >
JjeN
By(t)=P{J(1)=j] J(0)=i )
The Markov tenewal function is denoted by
R(t)= z:=0 A () “where A**(r) is the k-fold

convolution of A(t) by itself. The initial probability
vector is denoted by p(0) and the unit vector by e. The

joint distributions corresponding to the processes

{J(@), X(),t>0} and  {J(t), X(¢), Z(t),t >0},
respectively, are given by
Gy(x.1)= p(e)= j, X (1)< I (0) = i},
Ej(x»Z»f)ZP{J(f):j»X()<x Z <Z|J(O }
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where by Z(¢)<z we mean (Zl(t)s Z]sees Zp(t)S zp).

A vector (a)l,...,a) ) in R? is denoted by @. The

»
following Laplace transforms are of frequent use in
subsequent sections,

[’e]

a; (s)= J‘ef‘“dAU- (x),

_ tﬂj(x,g,t)d)cdidt ,

o(@; S)ZI Je_gg_”ﬂ,(0+,g,t)dz_dt ,

0 R?

o,5) Ie @l plk.) Sdi,g.(x),
0

Ck]

_ i —0'p(jx)-sx —
Ej@,s)—.([e A](x)dx.

Throughout this paper a matrix with entries
V;ji,j€Nis denoted by y=[y;] and a diagonal

matrix with entries

D:[agyj]‘

The following formula is
informative relation between
transforms, see [7], [10].

O(v,0.5)=0(@.5) Ep(e.s+v)
(1) Ep(ws+o)

Recall from [10] that in the univariate case the
Laplace transform of EZ ,(t) when p(k,x)=k" is

y;ie N is denoted by

an important and
the given Laplace

@.1)

given by

0’ ®(0,0,5)
Ton et

4 n—1 N 0}
——p (O (I -al(s)) (zw

L(EZ (1)) =—p'(0)

| M1
i=1

LRI

+1
Sn

where pp, =[0); k]; also when reward function is of the

form (1.2), it has been shown that
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‘ m
E(Z,0)=[ PO nE" (2)ppyedr , (22)
0 i=1
where gn(k), ke N, are the entries of the matrix

Ppm» N=1..m; and
E"(7)= JOOO x"G(dx,7). (2.3)

The Formula (2.2) enables one to compute the mean
of the cumulative reward up to time ¢, whenever the
reward function is a polynomial. Indeed if p satisfying

plit)= jp’(i,x) dx,

p(i,0)=0 and (d/dx)p(i,x) exists, then Z(¢) in (1.1)
can be written as

t
2()=[p (J(s), X(s)) ds.
0
which implies that

EZ(t)= jdszjqj (dx,s)p'(j,x), 2.4)

JeNo

where E; denotes the conditional expectation given Jy=i.
Note that the Formula (2.2), will follow from (2.4).
The next section is devoted to the evaluation of

Z(t) in the case that p is given by (1.2).

3. Covariance Matrix under Polynomial
Reward Functions

In this section we assume that

pik,x)=g;(K)x""i=1,2,0,p,

and by using (2.1) we obtain an explicit formula for
EZ,(¢)Z;(t). First note that,

o0

J‘efstE{e—g'z(t) }dt = p'(0)®(0,w,s)e,
0

o0

[ Elz,()2,(0))dt = p'(0)

0 /

o* CD(O a)s)|
=0 €

3.1
Also it follows from (2.1) that
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q)(Oast) = U(QaS)ED(QaS) .

Theorem 3.2. Suppose that
i=12,..,p, then

EZi(t)Zj(t):
= P ORW) 1, ™ alt)* E" 7 (0,
+mppt" a(t)* E" (I)PD;I')E

t

o O M pp e
0

Pi(kax): gi(k)xni >

(3.3)

where E"(z) is given by (2.3) and p,,; =[Jy,g,(k)].
Proof. Without loss< of generality, we evaluate
EZ,(t)Z,(¢) . Differentiating of (2.1) gives that

0®(0,w,5)  Oo(w,s)

Ey(w,s
0w, om, p(@.5)
+G((0,S) aED(Q:S) ,
- 0w,

and

0’®(0,0,5)  9°c(w,s)

Ep(o,
0w,0w, 0w,0w, p(@5)
+ 50(Q,s) aED(Qas)
0w, 0w,
+ 50(Q,s) aED(Qas)
0w, 0w,
2
+ c;v(co,s)—8 Ep(@.s)
- 0w, 0w,
34
Also from (2.1),
o(@,5) = o(@,5)C(@,5)+ 1,
which implies that,
do(@,s) _ 0o(,s) Cla.s)+o(@.5) oC(@,s) ’
Ow, 0w, - - 0w,
or
2 _ (-, L2 (- @)
Ow, - o) -
3.5)

similarly
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aO'(Q,S) — (I—C(a) (S))—l aC(Q’S)

(I-C(a.(s) .
0w, W,

By using a similar method and formula (3.5) we
obtain that

o’o(w,5)

=(I-C(w,s ox
0w,0m, ( (@,5))

{ oC(w, s) (I - Co.5)" 9C(@,s)

Ow, 0w,
P2 1 (g1 202
W) Oy
2
L IC@s) }x (I-C(a,5))" .
0w,0m, -
(3.6)
For p,;(k,x)=g;,(k)x",i =1,..., p, we have
ij , s J e zp s (k)" _Sdikj(x),
0
which implies
ij(Q,s):j e_sdikj(x).
0
Therefore C(0,s)=a(s) and
o(@.5) |w:0 :( l)nlﬂpma(nl)(s)a
aa)l - '
aC(Q) S) |w:0 :( 1)n2+1 pD.za(HZ)(S), (37)
aa)z - ’

where pp,.; =[0,g:(k)]. Also.we obtain that

0’Cyy (@, )
0w,0w,

|Q:Q N (_ 1)n1+n2 81 (k)g2 (k)akj(nﬁm(s),

therefore

0’C(@,s)

|@:Q = (=" ppppoa ™ (s) .
0w, 0w,

(3.9)
On the other hand

v (k)x" —sx —
Ej(@.s)=e Lo O g
0
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. 1-a,(s)
giving that £,(0,s) =————, or
s
I -
Ep(0,5)=12%20) (3.9)
Also
an(Q,S) —(- l)”‘“ d" l_aj(s)
ow, @0 s ’
and therefore
OF, <Q,s>| Py Z mi(-D'ap” (5)
(I —a py(s))
D D
s
(3.10)
and
O°E (w,s) = » " _sx
A2 - Igl (Ng(H)x"" e 20a) X
0w 0w, 4
A (x)dx,

which implies that

dmtn l-a, (S)

d ny+n, s

D)™ g1 (g2 ()

In the matrix form

0? 0" Ep(@,s) (®,5) |
0w,0m,

" (ny + )W) e (s)

ny+ny+1-i

Pp1PD:2 -
pary ils

+(n +ny)!

(I -a D(S»j
gt +1 :
(3.11)

It follows from (3.5) and (3.7) that

oo(w,s) |
a :9
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I =a(s) ' (D" ppya™ ()T - a(s) ™,
(3.12)
similarly

oo(w,s)

@=0
0w,

(I —a() " (-1 ppoa™ ()T —a(s) ™.
Equations (3.6)-(3.8) give that

0’o(@,s)

(] -y
S, e = =a()

w=0

{0 ppaa™ ()T - ()™ (=1)"" ppoa™(s)
HED" T ppa@ ™) = a() (D" ppya™(s)
(=1 o ppaa T () (- a(s)) !

(3.13)
Substituting (3.9)-(3.13) in (3.4) gives

*0(0,w,5)
0w, 0w,

(D‘ CD (1 agsy

w=0 —

{ ppac™ ()T - ()™ iy X
[ ()1 = ()™ (1 — e (Y= "™ (5)]
+ppaa™ ()1 - a(s)) ™ ppy x
[ () = ex()) M=ty (5)) — ™ (5)]
T PP ()T (N -ty ()
_ aD("1+"z) (s)] }
+(=D)" T —a(s)) ' ppoa™ ()T —a(s)) ™ ppy x
n -1
5
i=1
+(D)" I = a() ™ ppga™ () - a(s) ™ ppa
ny—1
5

(I -a(s)) " ppippa ¥

mD @) |, U= (s))}

— !
ilgm sM+1

nl(-D'ap”(s) |
l-'sr‘lz +1-i

( 1)2n2+1
s +1

~ap (S))J
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(ny +n)(=1) ap? (s)

("1 +n,
i=1

l-!Snl+n2+1—i
U-ap(s) )
—(I’l +n2)' Snl+n2+1
(3.14)

Now note that for m=n, ,n, ,n, +n,,

[« -ao) - ape)-ap™ ) =0

Therefore multiplying (3.14) in unit vector ¢ provides

(D= (I=a(s) " ppaa”™ ()T - a(s) ™" ppy ¥

=l i i
D ap ) | pponer,, T =ap(5) ],
i=1 i!Snl+l_i " Snl +1 -

+(-1)" (I =a(s) " ppaa™ ()L —a(s) ™ ppa

Sy (<) o, (s) - aD(s»J

n
Z i!snz +1-i n, +1

i=l1

+ (_ 1)2}12 +1

—(I-a(s)) " ppappa x

) Va0, Emane) ),
pr l-!sn1+n2+l—z n1+n2+1 -
(3.15)
Using the equation
(=1)"m a'”‘1<1><v,9,s)| _
s avm—l v=0
m=l o i, (D)
= l-!Ser —i Sm+
in (3.15) we obtain that
0*®(0, w, s ntn
OOy e= 1" - (o)) pia
0w, 0w,
" 0"l Dd(v,0, s
a"(s) #lv:opmg

avnl -1

n+n n _
+(=D"* z“f(l—o«s» ' g x
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" D(v,0,s)

0
a™ (s) P lv-0Pp2e

+(=1)

-1
ny+ny+1 n+n 6n1+n2 (D(V,Q,S)l

Pp1L Do E-
I v=0PD:1PDp:2 €
avnlJrnz

(3.16)

Now note that

é(l —a(s)™ = L[R()),

poic ()= L1 ppald). i=12

m—l 6”’_1CD(U,Q,S)

-1 veo = LIE" (1))
() )
Therefore by (3.1) and (3.16),
o 20,0, 5
UEZOZ:(0)]= p(0) 2D e
@ 0w,

= np(OLRW] Llppyt" a@)]L[E™(0)]ppse
+ nlp'(O)L[R(t)] L[,UD:zfn2 a(t)] L[Enl_l (t)]PDzlé
+(m +n, )P'(O)LU; gmt! (T)df} Pp1Pp2e

giving the result.
Corollary 3.17. Let

pi(kﬂx) = gi(k)xni >

then the covariance matrix of Z(t) =(Z,(t),.:., Zp(t)) is

givenby > (r)= [ZU (t)l, j=1

BZ (pla"'app) >

where
>, 0= P OR®* (n opital ) E" 7 e)op,
+ 1, pp it a(t)* E"! <t)pD:i jg

t
0 +n )P O) B (@)deppupp e
0

—n:n

ity (p,(o)j;En’l (T)pD:n, d‘[gj X

(p'(O)J.(; Enj B (T)pD:nj dl'g)
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Corollary 3.18. Let Z p(t) be a one-dimensional

reward process corresponding to p(k, x) = kx", then

Far(z, ()= 200/ [ RO* pyt"a)* B 0,

t
+ IEZ”_I (z')drpzDJg
0

2
_{np'(O)J‘Enl (T)dTpD:n g] .
0

Theorem 3.19. Let
p, (k,x) = an; g,, (k)x",r=12,..., p, then
EZ,()Z(t)=p'(O)R(1)*

Z Z (pD:rit[a(t) *jE! ()Pp.y

=1 j=I

~.

+(Ppugt! a0 E ™ ()ppyy e

m, mg T
+ P'(O)Z Z (l + ])J El+'/71 (T)dTpD:ripD:sj 2
0

i=1 -1

(3.20)
where pp.., =[O, (K)], n=L1L...m., r=12,..,p.
Proof. Let p,,(k,x)=g,,(k)x", then p,(k,x)

= Z;n:l Pk, x). If Z,, (t)and Z,.(¢), are the reward

processes and p,.(,.)

respectively, then by the linearity of Z, in p; Lemma

associated with p,,(.,.)

m

4.1 in section 4, it follows that Z,(¢)= zn ' Z

=1“m

(¥) and
therefore

=1 j=1
Now apply Formula (3.3) in Theorem 3.2 to

conclude the result.
Corollary 3.21. Let

prllx) =" g (X", r=l..p,
then the covariance matrix ofg(t):(Zl(t),...,Z (t))is

,,,,,
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Y. ()= pORN* [Z S it at)* JET Oy

i=1 j=1

+ pD:sy'tja(t) * iEi_l (t)pD:rij €

mr mS t . .
+ PO Y+ N[ ETN @) depp,ppge
i=l j=1 0

—[Ip’(o)iiE “(@)ppied TJX
0

i=1
t mg )
U P’(O)Z JE! ()Pp.y EdT] :
0 i=l1
Corollary 3.22. Let Z,(¢) be a univariate reward

process corresponding to p(k,x) = Z:; \&n (k)x", then

Var(zp (t)) =2p'(0)R(2)* i ppit'a(t)* JE'! ()pp. ;e

m m t
+ PO D+ N[ E T (@)drppippye
i=l j=1 0

t m 2
- (I P'(O)Z iE"™! (2)Ppi QdTJ .
0

i=1

4. Covariance Matrix Under Real Analytic
Reward Functions
Lemma4.l. Let (J,,7,) be a recurrent Markov-

with state. space N. Suppose
a .univariate’ reward process

renewal process
Zp(t), t>0, is

corresponding to a.reward function p, given by (1.1).

Then the following holds;
(1) Z(?) is linear in p for each ¢, i.e.,

ZP 1P 2 (t):ZP l(t)+Zp 2 (t):

() If put p,asm — oo, then EZ, () - EZ,
(¢) for each ¢,

(i) If the state space is a finite set then the
conclusion of part (ii) is satisfied even if the sequence of
reward functions only converges.

Proof. Part (i) is immediate from (1.1). For (ii) note
that it follows from the assumption that
Zy, (Do = Z,1), for every given ¢ and every o for

which Sup , T, (®) >t . Since the semi-Markov process
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is assumed to be recurrent the later event occurs with
probability ~one. Therefore Z, ()T Z(r) with
probability one. The desisred result follows by applying
the Monotone Convergence Theorem. For part (iii), let

Max C ,(t) = Max{p(k,x), 0<x<t, keN},

then for each given 7, C,, (¢) converges to C7) and
therefore is bounded in, p . e, C, (6)<M(7) for all
m. Thus it follows from (1.1) that

Z, (<C, ONO+D)<M@ON@)+]), 4.2)
where N(?) is the number of renewal epoches in [0,7].
The argument given in the proof of (ii) and (4.2) make it
possible to apply the Dominated Convergence. Theorem
to conclude the result. The proof is complete.

Theorem 4.3. Suppose a univariate reward function
p(k,x) assumes.a series representation of the form

x>0,

pk,)=Y @ k)",

n=1

where g,(.), n=1,2.... are nonnegative functions. Then

EZ,(0= [ P'(O)E,(r) e d7, (4.4)
0
where
E,(r)= j G(dxr)(d / dx)yp (x) 4.5)
0

and p (kx), ke N are the entries of the diagonal matrix
7 p(x).

Proof. Let p,,(k,x)= an:lg,,(k) x", m=>1, and let
Z,, (t) be the reward process corresponding to p
through (1.1). It follows that EZ,, (f) can be expressed
by (2.2). But

nx""'G(dx,7) pp,,

M=

Z nEn_l (T)pD:n

n=1

=
]
—_

G(dx7 T){(d/dx)i PDn xn}

n=1

G(dx’ T)(d/dx) Y D:m (X)

Il
S8 O 8 O——8

where yp.,(x)is the same as y,(x) with p replaced
by p,,. Now (d/dx)p, (k,x)1(d/dx)p(k,x), as
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m — o , which gives that
[Glax,o)d/dx) yp, ()T [Glax)(d/dx) 7 (6)
0 0

for each 7, giving that

Lim, ., EZ, ()= j P(OE,(z)edr. (4.6)
0

The result follows by applying (4.6) and Lemma 4.1
(ii).
Lemma4.7. Let (J,,7,) be a recurrent Markov-
renewal process with state space N. Suppose
Z=(Z\(1),....Z,(t)), t=0, i3 a reward process
corresponding to a multi-dimensional reward function
p=(p1,..., pp) given by (1.1). Then the followings

hold;
AO)If pmT porasm—s oo, then

EZ(0Zn(t) - EZ()Z(1) V',

(ii) If the state space is a finite set and EN*(f)< o

then the conclusion of (i) is satisfied even if the
sequence of reward functions only converges.
Proof. For (i) it follows from Lemma 4.1(ii) that
Zo(OZ(#) T Z(1)Z,(1) with probability one. The desired
result follows by applying the Monotone Conyergence
Theorem. For part (ii), it follows from the proof of
Lemma 4.1 (iii) that

2y (D Z0 (1) < M, (OM ()N (D) +1)°, (4.8)

where N(¢) is the number of renewal epochs in [0, 7],
and M, (1), , D The

argument given in the proof of (i) and (4.8) together
with the assumption that EN*(t) <" make it possible to
apply the Dominated Convergence Theorem, which
gives the result. The proof is complete.

Theorem 4.9. Suppose

r=1,-- are’ some constants.

prlk,x) =3 g, (X"

n=1

r:l,...’p,

where g,,(k) , k€N are nonnegative, then
EZ,(0Z,(t) = p'(ORO) *( 7, (Da(t)* E,(2)

+7,()a(0)*E, (1)) e

+ p’(O)IErS(T) edr, (4.10)
0

180
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where

i d
E (v)=|G(dx,7)—y,(x),
'([ dx

E,(7)= j Gldr. )~ {%(xm(x)}

and p, (k,x) are the entries of the diagonal matrices

yl‘(x)7 ”:1,"”P~

Proof. Let

Pk, X) =D g, ()x"

n=1

mz1, r=1--,p,

and let Z,,(f) be the associated reward processes. It
follows from Theorem 3.19 that EZ.,(f) Zn(f), can be
expressed by (3.20), but

>

=1 j=1

m

pD:riti * jEj_l (t)pD:sjg

m oo )
:Z pD:ritl *z jEj_l(t)pD:Sjg

i=1 j=1

n

Jx/'Gdx, ) pp.ge
Jj=1

= Y (Da()* |
0

7rm(t)a(t) I G(dx t)z ]xj pDSj

Jj=1

= Vm(Da()* j G(dx, r) Van(e
0

where y,,, (x) is as y,(x) with p,,, (kx) replaced by

P, (kx). Now 4 Prm (k%) T 4 P, (k,x) which implies
dx dx

that y,,, (x) ) 7, (x) . Thus

< d < d
! Gldx,t) = 7on () T { Gldx, )7, ().

Therefore as m — o ;

i M§

>3 poa ) * JE 00
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=V m(a(t) *I G(dx, t)%nm (x)e

Ty, ©a)*E (e . (4.11)

Similarly as m — o0 ;

i M§

Z Pt a@)*iE (0 ppie Ty (a) *E, (1)e
On the other hand

m t
Z (i+ J')PI(O)J. ER (0)Pp.iPpgdre
1 j=

I’ M§

i

- j POXY (+)E () ppppydre

i=l j=1

- j p'(0) j Gdr )Y S (4 5" ppyppydre

i=l j=1

- j p'(0) j G003 5 s 5 ppgdre

i=1 Jj=1

+[ PO, O % Y iy ylre
0 0 i=l Jj=1
= j P'(0) j G, ) (0) - {mm ()dze
+ip'<0)IG<dx, r)%{nm @ g (V)d7e

=Ip'(0)IG<dx, r)%{nm @7 (0))d7e

Now 7, (X)7 gm (X) ) 7, (x)y,(x) which is also real
analytic with positive coefficients, therefore

A @)

i{m ()7 g ()} 1 y
X

dx

and hence by the Monotone Convergence Theorem

j Gldx.7)— - {yrm ) o (OfT j Gldx,)—- {7, @7 (0}

Therefore

Y2+ NP Of EV (@, ppye
i=l j=1 0
= j P (0)jG<dx oo {yrm (75 ()7

T p'(0) j E,(r)edr. (4.12)
0

By passing through the limit in (3.20) and then
substituting (4:11) and (4.12), we arrive at (4.10). Thus
the desired result.is obtained.

Corollary 4.13. Suppose that the reward function of a
p-variate reward procees admits the power series
representation

pr(kax):ZZ:lgm(k)xns ":L“‘»p,

then the covariance matrix of Z(t)=(Z(¢),...,Z » (®) is

given by Z(t) = Zm(t) , rs=L-p,
> (0= pORO*y,Oa)* E 0
+7,(a(t)* E, (1)) e

+P(0)J’E (0)edr

t t
- {P'(O)j E. (T)ger[P'(O) | E. (r)gdr}
0 0

Corollary 4.14. Let Z,(t1) be a one-dimensional

reward  process  corresponding to  p(k,x)=

Z:: \&n (k)x", then

Var Z,,(t) = 29 (O)R(®)* 1 (1)a(t)* E,, (1

+P’(0)I E (z)edr
0

2
t
| PO[E ()edr|

[ 0’ J

where
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E (z)= { G(dx, T)%yz(x).

5. A Renewal Theory Approach

In this section we use the renewal theory to obtain
Z(t) for a more general function p, (k,x), rather than

analytic functions. By conditioning on the first renewal
epoch, in the univariate case, we obtain that

EZ(t) = (1= 4;(1))p(i,1)

+ Zj-Al-j(dx)(p(i,x)+E_/Z(t—x))

JeENo

= (1= 4,(0)p(i,1) + [ 4,(dx) p(i, %)
0

+> j Ay (d)E  Z(t~x)

JeNo

= o(i,t)+ ZIA,.J.(dx)EjZ(z—x)

JeNo

where E; is the conditional expectation given J(0)=i.
The above equation has the form

f=g+Axf,
t
8(,1) = (1= 4, ()i, 1)+ [ 4y (¥l )
0
and has the solution

EZ()= Y [ R;(dx)ai.t—x),

JeNo

(5.1)

which provides a formula for E;Z(¢). The behavior of
E i zZ (t)y
multivariate case, by conditioning on the first renewal
epoch one obtains that

Ein(t)Zs(t) =

t —> oo, is completely specified in [11]. In the

=(1=4,0)p, @,0)p, (1)

+ Zj-Ai/(dx)x

JeNo

E_/ {pr(i’x)+Zr(t_x)}{ps(iax)+Zs(t_x)}
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=(=4,()p, (@,0p,(0,1) +fA,- (d)p, (i,x) p, (i, x)
0

+> j Aij(dx){pr(i,x)E JZ(t-x)+ p (i, X)E er(t—x)}
JeNo

+ 2[4y E 7, (- 07, (- )

JeNo

=g, ()+ Y j Ay (dX)E AZ, (- 0)Z, (6 - )}

JeNo

The equation. given above is a Markov renewal
equation with

grs(i,t) =

= (1 - Al(t))pr(lat)pv (l’t) +J.Ai (dx)pr(iax)ps(i’x)
0

+ 20 4, (), (.0, Z, (1= )+ p, (0 0)E, Z, (- )]
=

and has the solution

EZ,(0Z,(t)= Y [ Ry(d0)g, (j,t=x). (5.2)

JeNo

The Z(z) and its asymptotic behavior may be

specified by using (5.1), (5.2) and the Markov Renewal
Limit Theorems (due to Cinlar). We expect the exact
analysis to be hard and interesting and can be the basis
of a further study.
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