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Abstract 

This paper criticizes the model and the new definition for osmotic pressure 
given by Parsafar et al. [J. Sci. I. R. Iran, Vol. 10, No. 4, 233 (1999)]. The model 
is a closed system containing 1 kg of solvent plus m mole of solute at constant 
temperature and under pressure P0 + π where P0 is the standard pressure and π is 
the osmotic pressure of the corresponding m molal solution. While the total 
number of moles, temperature and pressure of the system are specified, the 
volume of the system has also been specified. The volume of the solution under 
pressure P0 + π is claimed to be the same as the volume of 1 kg of pure solvent 
under the standard pressure P0. The present work shows that the two volumes can 
not be the same and their difference is not negligible. The use of an equation of 
state to calculate osmotic pressure and activity by Parsafar et al. has also been 
questioned. 
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1. Introduction 

Osmosis is the phenomenon of solvent flow through 
a semi permeable membrane that blocks the transport of 
solute through it. When two aqueous solutions (or other 
solvent solutions) are separated by a semi permeable 
membrane, water will flow from the side of low solute 
concentration, to the side of high solute concentration. 
The flow may be stopped by applying external pressure 
on the side of higher concentration. If there exist solute 
molecules only in one side of the system, then the 
pressure that stops the flow of the solvent is called the 
osmotic pressure, π. At equilibrium, there will be no net 

flow of solvent across the membrane, so the chemical 
potential of the pure solvent at pressure P must be equal 
[1] to the chemical potential of the pure solvent at 
pressure P + π as shown in Figure 1. In fact, the excess 
pressure on the solution compensates the decrease in 
chemical potential of pure solvent due to presence of 
solute. 

Parsafar et al. [2] have used a closed system model to 
drive an analytical equation for the osmotic pressure and 
the activity of some electrolyte and non-electrolyte 
solutions. The aim of this work is to evaluate their 
model and the new approach for calculating osmotic 
pressure and activity. 
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Figure 1.  The equilibrium is between pure solvent A at a 
pressure P on one side of the membrane and A as a component 
of the solution on the other side of the membrane at pressure  
P + π. 

 

 

Figure 2.  Definition of osmotic pressure in a closed system at 
constant T. (a) 1 kg of solvent under pressure P0 and volume 
V*

A (b) Solving m mole of solute with volume V’ under the 
previous pressure. (c) m molal solution with volume V=V*

A 
under pressure P0+π. (Taken from Ref. 2). 

 

2. The Closed System Model [2] 

The system consists of nA mole (1 kg) of solvent A 
and nB mole of solute B at constant temperature. It is 
assumed that the volume of solution, V’, (Fig. 2b) is 
larger than that of the pure solvent, V*

A (Fig. 2a). Then 
the osmotic pressure has been defined [2] so that it 
satisfies two constraints: 

1. The osmotic pressure equals that pressure which 
equalizes the chemical potential of solvent, µA, in 
solution with that of pure solvent, µ*

A, at the same 
temperature: 

µA (T, P0+π, XA) = µA(T, P0) (1) 

2. Due to the fact that the increasing pressure causes 
the reduction of volume, Parsafar et al. defined the 
osmotic pressure such that it will equalize the volume of 

the solution, V, at the temperature T and pressure P0 + π 
with the volume of 1kg of pure solvent, V*

A, at P0 and T: 

V (T, P0 + π, XA) = V*
A (T, P0) (2) 

According to these two assumptions, the osmotic 
pressure can be viewed as the pressure needed to insert 
the solute molecules among solvent molecules without 
any change in volume (Fig. 2c) [2]. 

3. Evaluation of the Model 

The first constraint is in fact the standard definition 
of osmotic pressure. At extra pressure on the solution, 
which is called osmotic pressure, the net flow of solvent 
is zero. This happens only when the chemical potential 
of the solvent on both sides of the membrane becomes 
the same (Fig. 1). Since one side is pure solvent, the 
chemical potential of A in the solution side must be 
equal to that of pure solvent. However, the second 
constraint, which is claimed to be a new definition for 
osmotic pressure, can not be true. This will be discussed 
in three ways: 

3.a) This constraint seriously fails when a solute with 
negative partial molar volume such as MgSO4 is used. 
The limiting partial molar volume of MgSO4 is −1.4 
cm3 mol−1. This means that the addition of small amount 
of MgSO4 to large volume of water results in a decrease 
in volume [1]. In order to restore the volume, a negative 
pressure must be applied to the solution and the osmotic 
pressure, based on the second constraint, becomes 
negative. Negative osmotic pressure requires 
spontaneous migration of solvent from the side of 
solution to the side of solvent which is against the 
diffusion law. For the case of positive partial molar 
volume, there is also no guarantee that when the excess 
pressure π is applied, the volume of the solution 
becomes the same as the volume of the pure solvent. 

3.b) The state of a thermodynamic system is defined 
by specifying the values of its thermodynamic 
properties [3]. However, it is not necessary to specify all 
the properties to define the state. For a single-phase 
system containing specified fixed amounts of 
nonreacting substances, specification of two additional 
thermodynamic properties, such as pressure P and 
temperature T, is generally sufficient to determine the 
thermodynamic state [3]. Once the thermodynamic state 
is specified, other thermodynamic properties such as the 
volume V, of the system is specified too. If the 
restriction of fixed composition is dropped, the state of 
the system will depend on its composition as well as on 
P and T. We then have the equation of state [3]: 
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V = f (nA, nB, T, P) (3) 

where nA and nB are the number of moles for solvent and 
solute respectively and f is some function that depends 
on the nature of the system. Given values of P, T, nA and 
nB of this system, the value of V of the system is 
determined. In the closed system model described by 
Parsafar et al., the variables nA and T are fixed. For a 
given nB mole of solute, in the presence of given nA 
mole of solvent, the osmotic pressure π is also known, 
because osmotic pressure is a function of temperature 
and composition. Therefore, the total pressure of the 
system, P = P0 + π, is specified too. On the other hand, 
the volume of the system has been fixed to V*

A (the 
volume of 1kg of pure solvent). Since all variables V, 
nA, nB, T and P in Equation 3 are fixed, no degrees of 
freedom left for the system. This violates the basic 
principles in physical chemistry. In principle, it is not 
possible to dictate the volume when other variables of 
the system are specified. In other words, once the values 
of nA, nB, T and P of the system are specified, the 
volume of the system is determined by the equation of 
state. Therefore, the volume of the system in Figure 2c 
has not to be necessarily the same as V*

A and Equation 2 
is wrong. 

3.c) When π is equal to zero, the volume of the 
system under given pressure P0 would be V*

A. Consider 
nB mole of solute B is added to the system and at the 
same time an excess pressure of π is applied to the 
system. Suppose the excess pressure satisfies the first 
constraint, i.e., compensates the chemical potential of 
the solvent which has been reduced by the addition of 
the solute. The question now is; how much would be the 
new volume of the system under the new conditions? 
One may think that, although we can not fix the volume 
of the system under the new circumstances, the system 
itself would choose its volume to be the same value (or 
nearly) as V*

A. In other words, the excess pressure π 
causes both the volume of the system and the chemical 
potential of the solvent to be constant as a solute is 
added to the system. The possibility of such behavior 
for a system will be investigated here. 

Let, first evaluate the change in chemical potential of 
the solvent when dnB mole of B is added to the system 
and the external pressure changes by dP. If the chemical 
potential of the solvent µA is regarded as a function of 
temperature, the total pressure P, and the mole fraction 
of the solvent XA , i.e., 

µA = f (T, P, XA) (4) 

then a change in chemical potential at constant 
temperature can be expressed as: 
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Since (∂G/∂P)T =V, the derivative (∂µA/∂P)T,X can be 
substituted by the partial molar volume of the solvent, 

AV . The second term in Equation 5 may be easily 
calculated using the fundamental relation; µA= µ*

A+RT 
ln(aA) where aA is the activity of the solvent and related 
to the mole fraction by aA = γXA, (γ is the activity 
coefficient). Substitution of the derivatives in Equation 
5 gives: 
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The differential dXA may also be calculated from XA 
= nA /(nA+nB). At constant nA, dXA = −XA .dnB /n where  
n = nA + nB. In order to satisfy the first constraint, the 
change in chemical potential of the solvent, dµA, must 
be zero i.e. 
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Here, dP is the required pressure change to keep the 
chemical potential of the solvent constant as dnB mole 
of solute is dissolved into the system. The osmotic pre-
ssure π may be obtained by integration of Equation 7. 
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Let see how much the volume of the system changes 
by addition of dnB mole of B and changing the pressure 
by dP. The volume of the system is a function of nA, nB, 
temperature and total pressure (Eq. 3): 
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P
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or 

VdPdnVdV TBB κ−=  (10) 

where BV  is the partial molar volume of the solute and 
κT is the isothermal compressibility of the solution. The 
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second constraint implies that the volume of the system 
remains unchanged, i.e. dV in Equation 10 must be zero. 
Thus 

BBT dnVVdP =κ  (11) 

where, dP is the required pressure change to keep the 
volume of the system constant when dnB mole of solute 
is added to the system. If the partial molar volume of B 
is negative, as in the case of MgSO4 in dilute solutions, 
then the required pressure change would be negative. 
However, dP in Equation 7 would be positive since at 
infinitely dilute solution, lnγ = 0 and AV  is positive. 
This clearly shows that a certain excess pressure can not 
always fix both the volume and the chemical potential 
of the solvent at the same time when solute is added to 
the solvent. The applied pressure fixes either the volume 
of the system or the chemical potential of the solvent. 

When nB mole of solute is dissolved, the total excess 
pressure, φ, to keep the volume of the system the same 
as that of pure solvent may be calculated by integrating 
Equation 11. 

BB
n

o
T

P

P
dnVVdP
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o
∫∫ =

+
κ

φ
 (12) 

For the closed system model claimed by Parsafar et 
al., [2] φ=π and Equations 8 and 12 are satisfied 
simultaneously. The relations must be true for any value 
of nB and the corresponding value of π. This can only 
happen if Equations 7 and 11 are simultaneously 
satisfied. Dividing the two equations gives a general 
condition to satisfy both constraints. 
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Here, AV  and BV  are the partial molar volumes of 
the solvent and solute, respectively, and V and n are the 
total volume and the total number of moles of the 
system, respectively. It is possible to show that such a 
relation is only true for a mixture containing two perfect 
gases. In such a system, γ is always unity, thus the 

derivative in Equation 13 vanishes. The partial molar 
volumes are also equal to the molar volume V  so that  
V = n AV , thus Equation 13 reduces to: 

RTnV TBB κ=  (14) 

The isothermal compressibility, κT, of perfect gas is 
1/P. Substitution of κT in Equation 14 gives the perfect 
gas equation; PVB = nBRT which is valid for any 
component in a mixture of ideal gases. Therefore, a 
system composed of two ideal gases satisfies both 
constrains expressed in Equations 1 and 2. This means 
that the addition of a perfect gas B to another perfect gas 
A at constant temperature and volume will not change 
the chemical potential of the gas A. The reason is that 
for a perfect gas the chemical potential is [1] 

θ
θµµ

P
PRT A

AA ln+=  (15) 

where, µθA is the standard chemical potential at the 
standard pressure Pθ and PA is the partial pressure of the 
gas A. The addition of a second perfect gas to the 
system at constant volume and temperature will not 
affect the partial pressure, PA, thus µA remains 
unchanged. The change in the total pressure of the 
system may be attributed to osmotic pressure if the 
system is placed in contact with the pure gas A at 
standard pressure Pθ via a membrane permeable to gas 
A but not to gas B. 

It can be easily proved that Equation 13 will not be 
satisfied for liquid solutions. If the total volume of the 
system, V is approximated to n× AV , Equation 3 reduces 
to 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+≈
PTA

A
TB X

RTV
,ln

ln1 γ
κ  (16) 

The term κT RT for gases is of the same order of 
partial molar volume. However, for condensed fluids κT 
is much smaller than that of gasses. For example, κT for 
water [1] is 4.96×10−5 atm−1 and the term κT RT at 298 K 
becomes 1.21 mL/mol while the molar volume of NaCl 
as a solute is 27 mL/mol, i.e. 22.3 times larger than the 
value of κT RT. If Equation 16 is true then the term 
(∂lnγ /∂lnXA) should be as big as 21.3. This requires a 
very steep slope for the plot of γA against XA. Starting 
from pure solvent (γA = 1), the activity coefficient of the 
solvent must drop quickly to zero to give such a steep 
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slope. This is obviously against the experimental 
observations. In order to examine this in more detail, the 
term κT VRT/n AV  in Equation 13b was calculated 
(using experimental data presented in Table 1) and 
compared with the experimental values for BV . Clearly 
the experimental and calculated values differ very 
much. 

The corresponding values for ∂lnγ /∂lnXA to justify 
Equation 13 are given in the last column of Table 1. The 
derivative varies with XA as: 

25.43267.78244.336
ln
ln

AA
A

XX
X

−+−=
∂
∂ γ  (17) 

Integration of Equation 17 yields; 

42.56625.21667.78244.336ln 2 −−+−= AAA XXXγ
 (18) 

The calculated (using Eq. 18) and the experimental 
[2] activities for water in sodium chloride solutions have 
been plotted in Figure 3. As it can be observed the 
experimental activity does not decrease as fast as the 
predicted values by Equation 13. 

4. Calculation of the Osmotic Pressure Using an 
Equation of State 

A question may be asked here. Why the experimental 
data fits very well (R2>0.99999) in the model proposed 
by Parsafar et al. [2]? In Reference 2, osmotic pressures 
were calculated by using the Dense System Equation of 
State [4] (DSEOS) which is as follows: 

P = A0ρ2 + A1ρ3 + A2ρ4 (19) 

where P and ρ are pressure and molar density, 
respectively. The Ai coefficients depend on the kind of 
solution, temperature, and solvent mole fraction. For the 
closed system the pressure and density have been 
defined by Parsafar et al. [2] as follows: 

P = P0 + π (20) 

ρ = (n + m)/V (21) 

where n and V are the number of moles and the volume 
of 1 kg of pure solvent and m is molality. The pressure 
and the density for different solutions have been 
calculated (using Eqs. 20 and 21) and then P/ρ2 has 
been fitted to a function of A0+A1ρ+A2ρ2 to find the 

coefficients A0, A1 and A2. The Ai coefficients and the 
correlation coefficient of the curves were reported. The 
method seems to be just fitting the data in a complicated 
way. The credibility of this method will be evaluated 
here. 

4.a) The actual density of solution is: 

)/1(
)/1(

VVV
nmn

VV
mn

∆+
+

=
∆+
+

=ρ  (22) 

where V is the volume of n mole of pure solvent and ∆V 
is the change in the volume when m mole of solute is 
added to the solvent. In the original paper [2] ∆V has 
been neglected. From the experimental data, given in 
Table 1, it can be concluded that for 1kg of pure water 
(n = 55.508 mol and V = 1002.92 cm3) the ratio m/n is 
smaller than the ratio of ∆V/V for all molalities. In 
principle, if m is not neglected, ∆V must not be 
neglected either. Even at high osmotic pressures, ∆V/V 
is still smaller than m/n because the compressibility 
factor of water is very small (κT = 4.96×10−5 atm−1). 
Therefore, ∆V should not have been ignored. 

4.b) The use of an equation of state seems not to be 
in its appropriate way here, since n + m belongs to the 
solution but V is taken from pure solvent. An equation 
of state is a relation among the thermodynamic 
properties of a system with a fixed composition. For 
example, Equation 19 gives the pressure of the system 
for a given density of a specific solution at constant 
temperature. For that specific composition, if the 
pressure is changed, the density will also be changed to 
satisfy Equation 19. The composition of the system 
must be fixed otherwise we face a new system with its 
own equation of state. Since the molality of the closed 
system model changes, the composition is not fixed and 
it is not possible to use an equation of state, with unique 
temperature dependent parameters, to describe the 
system. 

4.c) In the closed system model, n and V are assumed 
to be constant, thus the molar density becomes; 

ρ = ρ0 + m/V (23) 

where ρ0 is the molar density of pure solvent. If the 
pressure and the density from Equations 20 and 23 are 
substituted in Equation 19, we will have: 

P0 + π = A0(ρ0 + m/V)2 

              +A1(ρ0 + m/V)3 + A2(ρ0 + m/V)4 (24) 

Expanding this expression gives: 
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Table 1.  Experimental data for solutions of NaCl in 1 kg pure water at 298 K [5]. The last column represents values of ∂lnγ /∂lnXA to 
satisfy Equation 13 

% 
NaCl 
 

Molality 
 
 

Total number 
of moles 

N 

Volume of 
solution 

(cm3) 

Density of 
solution 
(g cm−3) 

AV (H2O) 
(cm3mol−1) 

BV  (NaCl) 
(cm3 mol−1) 

κT
 VRT 

n AV  

∂lnγ 
∂lnXA 

from Eq. 13b 
0 0.00000 55.5080 1002.92 0.99709 18.0680 17.8213 1.2120 13.7037 

1 0.17284 55.6808 1005.99 1.00409 18.0675 18.1192 1.2120 13.9499 

2 0.34920 55.8572 1009.19 1.01112 18.0662 18.4144 1.2121 14.1921 

4 0.71295 56.2210 1015.96 1.02530 18.0606 18.9954 1.2127 14.6636 

6 1.09218 56.6002 1023.28 1.03963 18.0514 19.5612 1.2139 15.1145 

8 1.48789 56.9959 1031.15 1.05412 18.0388 20.1082 1.2156 15.5421 

10 1.90119 57.4092 1039.60 1.06879 18.0228 20.6322 1.2178 15.9423 

12 2.33328 57.8413 1048.64 1.08365 18.0039 21.1282 1.2205 16.3113 

14 2.78547 58.2935 1058.31 1.09872 17.9826 21.5906 1.2236 16.6446 

16 3.25919 58.7672 1068.64 1.11401 17.9597 22.0129 1.2272 16.9378 

18 3.75602 59.2640 1079.65 1.12954 17.9361 22.3874 1.2310 17.1856 

20 4.27769 59.7857 1091.39 1.14533 17.9131 22.7055 1.2352 17.3826 

22 4.82611 60.3341 1103.88 1.16140 17.8926 22.9567 1.2394 17.5230 

24 5.40339 60.9114 1117.20 1.17776 17.8768 23.1290 1.2435 17.5995 

26 6.01188 61.5199 1131.38 1.19443 17.8687 23.2085 1.2474 17.6052 

 
 
P0 + π =  

              A0ρ0
2 + A1ρ0

3 + A2ρ0
4  

             + A1’m + A2’m2 + A3’m3 + A4’m4 (25) 

where the Ai
’ coefficients are the combination of Ai 

coefficients, ρ0 and V. The first three terms in the right 
hand side cancel out P0 from left hand side since for  
m = 0 the osmotic pressure π must be zero. Thus the 
osmotic pressure would be: 

π = A1’ m (1+A2”m+A3”m2+A4”m3) (26) 

This is not something new. It is just a virial-like 
expansion of osmotic pressure. Almost every function 
fits very well to a forth order polynomial. Therefore, the 
results presented in Tables 1 and 2 and Figures 3 to 5 of 
Reference 2 do not prove the validity of the model. At m 
= 0 Equation 24 reduces to P0 = A0ρ0

2 + A1ρ0
3 + A2ρ0

4. 
Mathematically, the Ai coefficients must be the same for 
all solutes because P0 and ρ0 are constant. However, 
Inspection of Tables 1 and 2 of Reference 2 shows that 
the Ai coefficients for sodium chloride and sucrose 

solutions at the same temperature differ considerably. 
This puts a question to the validity of such fitting. 
Instead of such long and indirect way, it would be easier 
and better to fit the experimental data, π directly into a 
polynomial function of m. If the data are fitted to a forth 
order polynomial, the quality of fit will be much better, 
(R2 > 0.9999999) and one can more easily and more 
accurately calculate the osmotic pressure at any 
concentration. 

4.d) Osmotic pressure is a colligative property, 
depending on the number of particles in the solution 
regardless of their nature. Although this is true for 
extremely dilute solutions it can be approximately 
applied to real solutions. Therefore, a solution of let say 
0.05 molal NaCl should produce an osmotic pressure 
almost as much as that of a 0.1 molal sucrose solution. 
An appropriate approach should lead to a general 
equation that regardless of the nature of the solute, 
predicts the osmotic pressure as a function of the 
effective molality (molality times the Van’t Hoff 
coefficient). Comparison of Tables 1 and 2 in Reference 
2 shows that the proposed equations for calculating 
osmotic pressure are solute dependent. 
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5. Calculation of the Activity 

The solvent activity has also been calculated in Ref. 
2, using the fundamental formula RT lnaA = −VAdp. 
However, the molar volume of the solution, 1/ρ, has 
been taken as the partial molar volume of the solvent 
(Eq. 14 of Ref. 2). The two quantities AV  and 1/ρ, are 
equal only for pure solvent. Figure 4 compares the two 
quantities for aqueous solutions of NaCl using the data 
presented in Table 1. As illustrated, the partial molar 
volume of water decreases by adding the solute while 
the molar volume of the solution increases up. 

It seems that the problem is in deriving Equation 10 
of Reference 2 i.e. dP = (2A0ρ + 3A1ρ2 + 4A2ρ3)dρ 
which is the differential of Equation 19 at constant m 
and T. In driving this expression the Ai coefficients were 
assumed to be constant. However, this is not true since 
the composition of the system would be changed. 
Obviously, the Ai coefficients depend on the mole 
fraction of the solvent. Therefore, Equation 14 of 
Reference 2 is in fact an approximation ( AV  ≈ 1/ρ) 
which can be used only for dilute solutions. In fact, 
what has been used to calculate the activities is neither 

AV  nor the real molar density (1/ρ), but it is the molar 
density defined by Equation 21. This quantity differs 
 

 
 

 

Figure 3.  The experimental and the calculated (using Eq. 18) 
activities for water in sodium chloride solutions as a function 
of mole fraction of water. 

very much from the actual molar density. The 
difference is demonstrated in Figure 4. Clearly among 
different molar volumes presented in Figure 4, the best 
approximation is to take VA

* as AV , but the authors 
preferred to use the worth case, i.e. 1/ρ (Eq. 21). 

Again the fact that the experimental activities fit very 
well in Equation 17 of Reference 2 (lna = B0+B1ρ + 
B2ρ2+B3ρ3) does not prove the validity of the approach. 
If ρ is substituted from Equation 23, then we have: 

lna =  

         B0 + B1ρ0 + B2ρ0
2  

         + B3ρ0
3 + B1’m + B2’m2 + B3’m3 (28) 

where Bi’ coefficients are combination of Bi 
coefficients, ρ0 and V. The first four terms vanish since 
for pure solvent (m = 0) the activity is defined to be 
unity. The remaining terms are just a third order 
polynomial, which is a very appropriate way to express 
the activity of the solvent as a function of the molality.  
Therefore, it is not surprising that the experimental 
activities fit quite well in the proposed equation. 

 
 
 
 

 

Figure 4.  Different molar volumes for sodium chloride 
solutions. 
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Conclusion 

Osmotic pressure is usually defined for a solution 
when it is in contact with its solvent via a 
semipermeable membrane. In fact the osmotic pressure 
is a property that can not be related to only one solution. 
Since the closed system is not placed in contact with the 
solvent the osmotic pressure has no meaning here and 
the definition proposed by Parsafar et al. [2] is obscure 
and imprecisely expressed form of the standard 
definition of osmotic pressure. In addition, the second 
constraint, expressed in Equation 2, is not true. Such an 
expression has not been observed in any common 
literature on physical chemistry describing the osmosis 
phenomenon. The defining formula for osmotic pressure 

is true for any volume of solvent or solution so that 
Equation 2 is irrelevant. 
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