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Abstract 

In many computer vision applications, segmenting and extraction of moving 
objects in video sequences is an essential task. Background subtraction, by which 
each input image is subtracted from the reference image, has often been used for 
this purpose. In this paper, we offer a novel background-subtraction technique for 
real-time dynamic background generation using color images that are taken from a 
static camera. The new algorithm, which is based on ‘temporal median filter with 
exponentially weighted moving average (EWMA) filtering’, is presented that 
effectively implements a temporal mode operation. The proposed method has the 
advantage that the parameters of the algorithm are computed automatically. In 
addition, the new method could start its operation for a sequence of images in 
which moving objects are included. The efficiency and robustness of the new 
algorithm is confirmed by the results obtained on a number of outdoor image 
sequences. 
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1. Introduction 

In the recent years many algorithms for moving 
object detection in applications such as video 
surveillance, human detection, traffic monitoring and 
human-machine interaction have been proposed [1-11, 
13]. The first step in most of these algorithms is to find 
a background or a reference image. For this purpose a 
background subtraction technique is used which 
distinguishes moving objects (e.g., humans in a parking 
lot or cars on a freeway) from the background scene. In 
order to find the objects’ regions, the current image is 
then subtracted from the reference image. Hence non-

stationary objects are left over. 
In a typical approach for background estimation, the 

reference image is obtained when the scene is static 
(i.e., there is no background motion). However, since 
there are variations in lighting conditions caused by 
changes in the environment light level (due to changing 
position of the sun light, clouds, shadows), updating 
techniques should be applied to reference image in order 
to keep it up-to-date [10]. 

In a realistic situation, it may sometimes be 
impractical for a surveillance system to acquire a 
background image with no moving objects (e.g., for a 
traffic surveillance system which monitors scene of a 
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street or highway) and sometimes stationary objects are 
moved away from the scene (e.g., a parked car is taken 
out or a gate is opened and then left opened). To 
overcome these problems a dynamic background 
generation technique should be used [11]. 

The rest of the paper is organized into six sections 
and one appendix. Section 2 deals with three existing 
methods for background generation. Section 3 describes 
the proposed algorithm. In section 4, the selection of 
parameters is discussed. Speed-up techniques for the 
computation of two parameters of the algorithm are 
described in section 5. Section 6 deals with the 
experimental results and analysis of our proposed 
method applied to several video sequences. In section 7, 
we provide conclusions and some suggestions for future 
work of the algorithm. Finally, in the appendix an 
EWMA filter based on an adaptive-control smoothing 
method is described. 

2. Existing Methods of Background Generation 

We shall now take a look at three different methods 
for background generation [9]. The first method is 
almost impossible to implement. The second technique 
needs a large amount of memory and its results are 
poor. The proposed algorithm is an extension of the 
third method and it uses an EWMA filter to reduce the 
effect of noise and residues of foreground objects. 

2.1. Snapshot Method 

“The first technique, termed the ‘snapshot’ method, 
simply involves waiting until there has been no 
movement in the scene for a period of time, and then 
recording the image as the background frame. However, 
there is no guarantee that there will be a period when the 
entire image is stationary. The snapshot method is 
readily expandable to color images, as we should wait 
until the R, G, B channels are all steady” [9]. 

2.2. Temporal Averaging 

“If it is assumed that movement occurs only for a 
tiny proportion of the time, we can construct a 
background frame by simply taking the average 
(throughout time) of the sequence of images. If a pixel 
was only covered by a moving object for, say, 0.01% of 
its time, then the average pixel value over time would 
(to 8-bit resolution) equate to the background. 

Temporal averaging produces poor results when 
movement occurs for long periods of time, or if an 
object lingers in a position for a long period of time. As 
a consequence of the averaging, a ‘motion blurring’ 

effect occurs” [9]. See temporal averaging effect in Fi-
gure 2 in comparison with the input image in Figure 1. 

2.3. Temporal Median Filter 

“We can extend the principal of the snapshot method 
to look instead at individual pixels that are steady in 
value for a specified time, rather than waiting for the 
entire image to stabilize. The background frame is then 
created only from pixels that have been stable for more 
than the specified time. Note that our specification of 
‘stable’ must allow for some small variation in value to 
accommodate effects due to noise” [9]. 

3. The New Background Algorithm 

In this section a new algorithm for background 
generation is proposed. Firstly, a new method based on 
temporal median filter is explained in section 3.1. Then 
a pseudo code is presented in section 3.2. In section 3.3, 
it will be shown how some parts of the pseudo code 
should be modified in order to make the method noise 
tolerant. 

3.1. The Method Description 

“The algorithm utilizes two bitmaps, BL and BS. BL 
holds the background bitmap that will develop as the 
algorithm processes the incoming frames, and BS holds 
the last frame from the camera. 

Each pixel in BL has two timers associated with it, TL 
and TS. TL is called the long term timer, and counts the 
number of frames that a pixel in BL has been steady in 
value. Thus as each new pixel value arrives, it is 
compared to the existing one in BL. If it is within a 
tolerance τ of BL then TL is incremented and the pixel in 
BL is replaced with the value of the new pixel. 

TS, the short term timer, counts the number of frames 
for which the pixel differed from the value in BL. Thus 
if a pixel is suddenly covered by a new object, TS will 
increase and TL will remain the same. When TS > TL the 
pixel has been at the ‘new’ value for longer than the 
value in BL, and so we may assume that the new value is 
part of the background. In this case the pixel is copied to 
BL and BS, and TS is reset to zero. 

A few additional constraints are required since a limit 
µ should be imposed on TL, as the latter could increase 
in size over several days, requiring a newly positioned 
object to be present in the scene for several days before 
it is accepted into the background image. A typical 
value for µ might be 7500 (5 min ×60 s/min ×25 
frames/s), requiring an object to be present for 5 min 
before it appears in the background. 
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Figure 1.  Image taken by camera (Fld350.bmp). 
 
 
One further restriction is that TS must be reset to zero 

whenever a pixel in the incoming frame is not within τ 
of BS . Hence continually changing pixels will not be 
incorporated into the background. 

The algorithm slowly adapts to changes in the 
background image (for example the onset of dawn or 
dusk) as such changes will be within τ of BL, so BL will 
exactly track the slowly changing scene regardless of 
the value of µ” (this method description is from a 
presentation by Alistair E. May [9]). 

3.2. The Pseudo Code of the Algorithm 

The algorithm description in section 3.1 can also be 
presented in pseudo code format as follows: 

 
//  The lines preceded by numbers, need some 
//  modifications as will be explained in section 3.3 
 
if (input pixel value ∈ [BL − τ, BL + τ] ) { 
      inc (TL); 
1:   BL  ← input pixel value;      
}                                                 
else 
      if  (input pixel value ∉ [BS − τ, BS + τ] ){ 
           TS  ← 0; 
           BS  ← input pixel value; 
      } 
      else{ 
2:          BS  ← input pixel value; 
             inc (TS ); 
      } 
if  (TS > TL) { 
3:        BL  ← input pixel value; 
4:        BS  ← input pixel value; 

 

Figure 2.  Temporal Mean (Mean420.bmp). 
 
 

           TS  ← 0; 
} 
if  (TL > µ) 
      TL ← µ; 

3.3. Temporal Median Filter with Exponentially 
Weighted Moving Average Filtering 

“One advantage of the temporal averaging technique 
is that noise (which manifests itself as high frequencies) 
is greatly reduced by the low-pass filter inherent in the 
method. Reducing the noise in the background image 
will improve results when we come to perform 
segmentation. 

The temporal median filter cannot reduce noise in 
this way, but it is easy to rectify it so it does. 

At the points in the code of section 3.2 where there is 
a new incoming pixel, instead of copying it to BS or BL, 
we should only add a proportion (e.g., 10%) of the new 
pixel to a proportion (e.g., 90%) of the existing one. The 
only exception to this rule is when TS = 0 (and thus there 
is a pixel value in BS, which is not the one we wish to 
re-use, as it has just changed significantly)” [9]. This 
effect is called a ‘simple exponential smoothing filter’ 
as it is introduced in [14, chapter 4] and has an updating 
equation of the form: 

BL (x, y, t)  ←  (1 − α) BL (x, y, t − 1) + α I(x, y, t) 

where BL (x, y, t), BL (x, y, t−1) are present and previous 
background bitmaps at position (x, y), I(x, y, t) is the 
current input image at position (x, y) and α is called the 
smoothing constant (0 ≤ α ≤ 1). T = 1/α is the time 
constant that shows the length of time (or the number of 
frames, if every second is considered as 25 frames), 
before which the input images are ignored and have no 
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effect on updating of the background image. In fact, it 
shows how many recent frames should be considered in 
the updating of the reference image. 

Following the above statements, in the pseudo code 
of section 3.2, the lines preceded by numbers 1 and 3 
are replaced by “BL  ←  (1 − α) . BL + α . input pixel 
value” and the lines numbered 2 and 4 are replaced by 
“BS  ←  (1 − α) . BS + α . input pixel value” to reduce 
the effect of noise. 

4. Automatic Parameters Selection 

The selection of parameters has a great effect on the 
performance of the algorithm. In section 4.1 to 4.3 it 
will be shown how three parameters of the method the 
exponential smoothing constant α, the threshold τ and 
the upper limit on TL, i.e., µ) should be selected. 

4.1. The Selection of α 

The exponentially weighted moving average 
(EWMA) is a filter that is used for reduction of the 
amount of noise in dynamic systems. This filter gives 
more importance to more recent data by ignoring older 
data in an exponential manner. The operating 
characteristics of an EWMA filter are determined by the 
value of the smoothing constant α (0 ≤ α ≤ 1). If the 
value of α is large, the smoothing filter output quickly 
tracks the changes and the fluctuations of input signals. 
However, if α is small, the filter slowly responds to the 
signal changes. Thus the correct choice of smoothing 
constant α has an important role on the efficiency of an 
EWMA filter. 

We are interested in choosing the value of α 
depending on the changes of input pixels. “Several 
techniques have been developed to monitor and 
modify automatically the value of the smoothing 
constant in exponential smoothing. These techniques 
are usually called adaptive-control smoothing 
methods, because the smoothing parameter modifies 
or adapts itself to changes in the underlying time 
series. Trigg and Leach [15] have described a 
procedure for adaptive control of a single exponential 
smoothing constant, such as, for example, simple 
smoothing ST = α xT + (1 − α) ST−1 for a constant 
process. Trigg and Leach automatically adjust the 
value of the smoothing constant by setting: 

α(T) = | Q(T) / ∆̂ (T) | 

Their method is based on the smoothed error tracking 
signal Q(T)/ ∆̂ (T) where Q(T) is the smoothed forecast 
error and ∆̂ (T) is the smoothed mean absolute 

deviation, both computed at the end of period T” [14, 
chapter 9]. The details of the computation of α(T) for 
each pixel are lengthy and are given in the Appendix. 

4.2. The Selection of Threshold τ 

“The choice of τ should be slightly higher than the 
perturbations in pixel value due to noise. The algorithm 
is fairly noise tolerant, as a noise impulse on a pixel will 
temporarily increase TS but not too much so it will rise 
above TL. At worst a noise impulse could stop a piece of 
the scene from being incorporated into the background. 
Consider the situation where TS is close to TL, so that BS 
contains a pixel that is a good candidate for the 
background. If a new pixel arrives for this position that 
deviates by more than τ from BS due to noise, then TS is 
reset and we must wait for µ frames before the pixel 
ever has a chance of being incorporated into the 
background again. 

If the value chosen for τ is too low, then noise will 
cause problems due to the aforementioned effect. If τ is 
too high, then we start to see parts of moving objects 
appearing in the background, as the algorithm is too 
insensitive to movement” [9]. Figures 3 to 6 illustrate 
these effects. 

Since the selection of τ has a great effect on the 
behavior of the algorithm, a technique is presented here 
which we will call ‘noise estimation’. Thus based on the 
contents of the images the system can automatically 
determine a suitable value for τ and for each color 
channel separately. 

As stated above, τ should be slightly higher than the 
noise level. If it is assumed that the noise in the image is 
of type additive zero mean Gaussian noise, then the 
standard deviation of noise is an estimate of the noise 
level for each frame and it is an appropriate choice for 
the threshold τ. 

A fast estimation of the noise variance for each 
image can easily be obtained as presented in the paper 
by John Immerkær [12]. Noise is estimated by using a 
mask operator N of the form in Figure 7. The mask 
operator N has zero mean and variance 36σn

2 assuming 
that the noise at each pixel has a standard deviation of 
σn. If the mask N is applied to 

 
 1 -2 1 

N = -2 4 -2 

 1 -2 1 

Figure 7.  Noise estimation mask operator. 
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Figure 3.  Temporal Median (Tm350.bmp), τ=1. 
 
 

 

Figure 5.  Temporal Median (Tm350.bmp), τ=10. 
 
 
all pixels of the input image, then the variance of the 
noise can be computed as: 

2 2

image I

1 ( ( , ) * N)
36 ( 2)( 2)n I x y

W H
σ =

− − ∑  

where I(x, y) denotes the position (x, y) of the input 
image, and W and H stand for the image width and 
height, respectively. The standard deviation of the noise 
should be computed for each color channel separately. 
The threshold levels are integer values, thus the results 
obtained are rounded up. 

4.3. Choice of µ 

For the choice of µ, if the video surveillance system 
is going to operate in indoor or outdoor scenes  

 

Figure 4.  Temporal Median (Tm350.bmp), τ=5. 
 
 

 

Figure 6.  Temporal Median (Tm350.bmp), τ=30. 
 
 

permanently, then any value in the range of a few 
minutes will work well. Thus the value of 7500 frames 
(for 5 min) is a reasonable and suitable default value for 
µ. However, if the algorithm is being tested offline on a 
sequence of images consisting of several hundred 
frames (e.g. 400 to 600 frames), then µ should be set at 
least to 10 to 15 percent of the number of frames (i.e., 
40 to 60 frames as the minimum value for µ). 

5. Speed-Up Techniques for Computing  
the Parameters 

5.1. A Speed-Up Technique for the Computation of α 

The selection of the smoothed constant α is based on 
the approach presented in section 4.1 (and in the 
Appendix). In order to alleviate the complexity of the 
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computations of smoothed constant α(T) for each pixel, 
we use the following technique: 
• If the absolute difference between the input pixel 

intensities and the previous pixel intensities is less 
then or equal to 2, use the previous values of α(T) for 
the new input pixel (i.e., all those computations for 
Q(T) and ∆̂ (T) that lead to the computation of α(T) 
for each color channel are not needed to be 
accomplished). 

Since many pixels have almost the same intensities in 
two or three successive frames, a significant reduction 
in the number of calculations for α(T) could be 
achieved. 

For implementing this technique, we just need to 
keep a previous image in memory. For each input pixel, 
we compare the pixel intensities in three color-channels 
with its corresponding pixel intensities in the previous 
image. If for either color channel, the absolute 
difference between input pixel intensity and the 
previous pixel intensity is greater than 2, the 
computation of α(T) is done for all three channels and 
the input pixel intensities are copied to the previous 
image. Thus, after processing several frames, previous 
image pixel intensities would be obtained from different 
frames. 

The quality of background images using this speed-
up technique is very similar to the quality of reference 
images obtained based on the full computation of α(T) 
for all the pixels. However, the experiments show this 
technique reduces on the average about 20 percent the 
processing time of computation of α(T) for each frame 
(e.g. 60 ms is reduced to 50 ms). 

5.2. A Speed-Up Technique for the Computations of 
the Thresholds 

We use ‘noise estimation’ method to compute the 
noise level for three color channels and each frame 
separately. However, the noise level is often due to 
camera noise that is fixed for all frames. Thus one of the 
following techniques can be used for speeding up the 
computation of threshold τ for each color channel: 
• ‘Noise estimation’ can be applied to a number of 

initial images to compare the threshold levels for 
three color channels of successive frames. If the 
threshold levels of corresponding color channels are 
the same, we can use those threshold levels for all the 
input images. In this case, no time is spent for the 
computation of threshold τ for the remaining input 
images. 

• If the threshold levels change but very rarely (e.g. 
due to rounding up) or if we want to be more 

conservative by assuming that the camera noise level 
may change suddenly, for example, by fluctuating 
the environment lighting condition, we can still apply 
‘noise estimation’ method first to red channel for 
frame ‘i’, then to green channel for frame ‘i + 1’ and 
finally to blue channel for frame ‘i + 2’. This process 
can be repeated for all the succeeding frames and 
previous values of threshold levels are utilized for the 
other two channels. This speed-up technique can 
reduce the computation time for at least 5 to 10% in 
comparison with the computation of threshold levels 
for all three channels. 

6. Experimental Results and Analysis 

Using an adaptive-control smoothing method for the 
computation of α is justified in section 6.1. In section 
6.2 the results of applying the algorithm to several 
sequences of images are shown and the results are 
analyzed. 

6.1. Justification for Using an Adaptive-Control 
Smoothing Method for the Computation of α 

In section 4.1 and in the Appendix, the Trigg and 
Leach’s adaptive-control smoothing method [15] was 
explained. In addition, in section 5.1, a speed-up 
technique for the computation of α(T) was offered. A 
possible question that may be asked is the reason for 
using such lengthy computations for α rather than using 
a fixed α (e.g. α = 0.1). There are two main reasons that 
justify the application of adaptive-control method as 
pointed out below: 
1. The adaptive-control smoothing method has the 

capability of removing the effect of simulated noise 
faster than the best fixed-α value provided that after 
a specified number of frames including simulated 
Gaussian noise, there are a number of succeeding 
frames containing no simulated noise. 

2. The foreground objects’ residues are removed more 
quickly and the background image is obtained more 
rapidly using adaptive-control smoothing method in 
comparison with the best fixed-α value for the same 
number of frames. 

In order to show point 1, the following experiments 
were accomplished: 
• To a sequence of frames Fld80 to Fld180 containing 

no moving objects, we added simulated Gaussian 
noise with standard deviations of σ = 0.1, 0.2,…, 1.0 
(we call the noisy frames Fld′80 to Fld′180). Then 
the proposed background generation algorithm was 
run with α=0.01,0.02,…,0.99 to find out which value 
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Figure 8.  Back_Img212.bmp, Differ1 = 7993114. 
 
 
of fixed α minimizes | Back_Img180 – Fld180 | 
where Back_Img180 is the generated background 
image for Fld′180 and Fld180 is the real background 
image. The value of α = 0.96 was obtained for all the 
simulated noisy frames regardless of the standard 
deviation of the simulated noise. 

It means that if a fixed value of α (e.g. the optimal 
value) is used, the same result is yielded independent of 
the standard deviation of the simulated noise. Of course, 
it is easy to show mathematically that in the following 
formula 

BL (x, y, t) ← (1 − α) BL (x, y, t − 1)+ α I (x, y, t) 

if we assume that the camera noise plus simulated 
Gaussian noise in BL (x, y, t − 1) and I (x, y, t) are 
almost the same, then regardless of the value of α, the 
same total amount of noise is produced in BL (x, y, t). 
• After Fld′80 to Fld′180 containing simulated 

Gaussian noise with standard deviation of σ = 4.0, 
we added Fld181 to Fld212, a number of input 
frames from the background scene including no 
moving objects. The previous experiment was 
performed but on the total sequence Fld′80 to Fld212 
for the optimal value of fixed α that minimizes 
difference1 ≡ | Back_Img212 − Fld212 | where 
Back_Img212 (Fig. 8) is the generated background 
image after operating on the total sequence and 
Fld212 is the real background image. The value of α 
= 0.25 was obtained as the result. Then the algorithm 
was run with the adaptive-control smoothing method 
on the same total sequence and difference2 ≡ | 
Adaptive_Back_Img212 – Fld212 | was also 
computed where Adaptive_Back_Img212 is the 
generated background image using adaptive-control 
smoothing method (see Fig. 9). The experiment 
showed that difference2 is smaller than difference1. 

Therefore, if the camera noise is changed suddenly due  

 

Figure  9.  Adaptive_Back_Img212.bmp, Differ2 = 7201674. 
 
 
to any unknown reason almost rarely and after some 
number of frames the camera noise gets back to its 
normal level, the adaptive-control smoothing method is 
more capable to remove the effect of the extra noise 
with a fewer number of frames than with the fixed α 
value. The reason is that, although this is an important 
feature of the exponentially weighted moving average 
(EWMA) filter to place more emphasis on most recent 
data, however, selection of larger smoothing constant α 
automatically gives even more importance to the current 
input data than with the fixed α and thus better results 
are yielded. 

If the camera noise is never changed, there is still an 
even more important feature of the adaptive-control 
smoothing method as mentioned in the case 2 above. To 
demonstrate this feature, the following experiment was 
done: 
• Consider a sequence of input images Fld250 to 

Fld350 containing a moving object. We repeated the 
algorithm on this sequence to find the optimal fixed 
α that minimizes difference1 ≡ | Back_Img350 –
 Fld212 | where Back_Img350 (Fig. 10) is the 
generated background image for Fld350 and Fld212 
is the closest and most recent real background image 
available for image Fld350, since Fld350 includes a 
moving object. The result α = 0.50 was obtained. 
Then adaptive-control smoothing method was also 
run on the same sequence and difference2 ≡ 
| Adaptive_Back_Img350 – Fld212 | was also 
computed where Adaptive_Back_Img350 is the 
generated background image using adaptive-control 
smoothing method for Fld350 (Fig. 11). The 
experiment showed that difference2 is smaller than 
difference1. 

Thus the answer to the question is that utilizing the 
above adaptive-control method has a significant effect 
on the quality of background images. In fact, if an 

www.SID.ir



Arc
hi

ve
 o

f S
ID

Vol. 14  No. 4  Autumn 2003 Shoushtarian and Ghasem-aghaee J. Sci. I. R. Iran 

 358  

 
Figure 10.  Back_Img350.bmp, Differ1 = 3102308. 

 
 

 

Figure 12.  Field Noise Estimation (Fld_Ne248.bmp) Red-τ = 
3, Green-τ = 3, Blue-τ = 3 (size: 384 × 288) Computation 
Time = 57 ms. 

 
 

 

Figure 14.  Field Noise Estimation (Fld_Ne315.bmp) Red-τ = 
3, Green-τ = 3, Blue-τ = 3 (size: 384 × 288) Computation 
Time = 58 ms. 

 
adaptive-control smoothing method is not used, the 
reference images will not be obtained in such a few 
numbers of frames with most of the foreground pixels 
removed. 

 
Figure 11.  Adaptive_Back_Img350.bmp, Differ2 = 2732747. 

 
 

 

Figure 13.  Field Noise Estimation (Fld_Ne275.bmp) Red-τ = 
3, Green-τ = 3, Blue-τ = 3, (size: 384 × 288) Computation 
Time = 56 ms. 

 
 

 

Figure 15.  Field Noise Estimation (Fld_Ne375.bmp) Red-τ = 
3, Green-τ = 3, Blue-τ = 3 (size: 384 × 288) Computation 
Time = 55 ms. 

 
6.2. Analysis of Results 

Figures 12 to 15 show how rapidly the foreground 
object pixels are removed from the reference frames 
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while there is a moving object. In fact, the algorithm 
usually needs 6 to 10 s (less than 250 frames, based on 
25 frames/s) to find the background frame where there 
are moving objects included and it needs less than 2 s 
(50 frames) if the algorithm starts with 40 to 50 images 
that demonstrate the environment’s lighting condition is 
changing (i.e., not static images) but there isn’t any 
moving object in them. Thus, these numbers of frames 
are enough for the algorithm to find the background 
images from that frame on although there are a number 
of moving objects appearing in the succeeding input 
images. 

At the present time, 17 to 18 color images (with the 
resolution of 384 × 288 pixels and processing time of 55 
to 56 ms. on the average for each image) are processed 
on a 1.7 GHz Pentium 4 PC with 1GB of RAM running 
Windows 2000 Professional Edition (the images shown 
above are almost half of the size of the original images 
in order to take less space). If standard images (i.e., 320 
× 240 pixels) are used, processing time can at least be 
reduced by the value of 1.44 (384 × 288 / 320 × 240), 
yielding processing rate of 25.7 to 26.2 Hz (38.2 to 38.9 
ms. for each frame). This shows that the algorithm can 
run in real time on a Pentium 4 PC for standard images 
(due to 25 input frames/s, the processing time for every 
frame should be less than 40 ms). Meanwhile, upon 
appearing faster PCs (with higher CPU speeds) at the 
market, more processing rate is readily feasible. Thus, 
in the near future, the algorithm can run in real time 
even for images with relatively high resolutions (such as 
384 × 288 pixels). 

We have examined the proposed algorithm on 
different sequences of images and almost in all the cases 
it has performed quite fast and well with encouraging 
results confirming the robustness of the algorithm for 
color images (see Figs. 16 to 23). 

 

7. Conclusions and Future Work 

A new real-time dynamic background generation 
technique for color images taken from a static camera 
was presented. Initially, three existing methods called 
snapshot, temporal averaging and temporal median 
filtering were evaluated. Then based on the strengths 
and the weaknesses of these methods, the final 
algorithm called ‘temporal median filter with 
exponentially weighted moving average (EWMA)’ was 
introduced. 

One of the advantages of the new algorithm is that 
two of its parameters are computed automatically. In 
contrast to some other background generation 
techniques, the new algorithm does not need to have any 
training period for initializing the parameters [5]. In 
fact, after the first input frame that is used for the long-
term bitmap (i.e., BL), the dynamic background image is 
generated for the second and all the succeeding frames. 
In addition, the method could start its operation for a 
sequence of images in which moving objects are 
included. Finally, from the results obtained, the 
algorithm was shown to be fast, robust and efficient 
(from the Figs. 12 to 23, it is obvious that all moving 
pixels have been removed thus the algorithm is robust 
and it takes less than 125 frames (for Figs. 20 to 23 
about 50 frames) for background generation). 

We have found that about 70% of the computation 
time of the new algorithm is spent calculating α (the 
constant of EWMA). It is possible to find some 
shortcuts such as lookup tables so that the value of α is 
found using a table rather than performing lengthy 
computations (of course, interpolations might be used 
for the values not listed in the lookup table). 

 
 

 

Figure 16.  Car_Park3 Input Image (Cp3_50.bmp) (size: 352 
× 288). 

 
 

 

Figure 17.  Car_Park3 Input Image (Cp3_115.bmp) (size: 352 
× 288). 
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Figure 18.  Car_Park3 Noise Est. (Cp3_Ne70.bmp) Red-τ = 5, 
Green-τ = 5, Blue-τ = 6, (size: 352 × 288) Computation 
Time = 51 ms. 

 
 
 

 

Figure 20.  Car_Park1 Input Image (Cp1_333.bmp) (size: 352 
× 288). 

 
 
 

 

Figure 22.  Car_Park1 Noise Est. (Cp3_Ne345.bmp) Red-τ = 
6, Green-τ = 5, Blue-τ = 6 (size: 352 × 288) Computation 
Time = 53 ms. 
 

 

Figure 19.  Car_Park3 Noise Est. (Cp3_Ne115.bmp) Red-τ = 
5, Green-τ = 5, Blue-τ = 6 (size: 352 × 288) Computation 
Time = 52 ms. 

 
 
 

 

Figure 21.  Car_Park1 Input Image (Cp1_383.bmp) (size: 352 
× 288). 

 
 
 

 

Figure 23.  Car_Park1 Noise Est. (Cp3_Ne383.bmp) Red-τ = 
6, Green-τ = 5, Blue-τ = 6 (size: 352 × 288) Computation 
Time = 52 ms. 
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As for future work, more research should be done so 
that a separate threshold level is computed for each 
pixel with very short computation time and efficient 
result. An individual threshold for each pixel is more 
robust than using a single threshold for all the pixels in 
each color channel. 

Finally, if the system needs to operate continuously, 
the value of µ might be chosen dynamically based on 
the contents of images. However, more investigations 
should be done to determine whether changing the value 
of µ might have a positive effect in the efficiency of the 
algorithm when it is used for long periods of time. 
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Appendix 

As stated in section 4.1, “Trigg and Leach [15] 
automatically adjust the value of the smoothing constant 
by setting: 

α(T) = | Q(T) / ∆̂ (T) | (9.4)1 

their method is based on the smoothed error tracking 
signal 

Q(T) / ∆̂ (T) (9.1) 

where Q(T) is the smoothed forecast error and ∆̂ (T) is 
the smoothed mean absolute deviation, both computed 
at the end of period T. The smoothed error is computed 
according to 

Q(T) = γ e1(T) + (1 – γ) Q(T – 1) (9.2) 

where Q(0) ≡ 0 and the smoothed mean absolute 
deviation is 

∆̂ (T) = γ | e1(T) | + (1 – γ) ∆̂ (T – 1) (9.3) 

where e1(T) is the forecast error in period T and γ is 
smoothing constant such that 0 < γ < 1.” [14, chapter 9]. 

“In contrast to Q(0) that is zero, ∆̂ (0) ≠ 0. However, 
∆̂ (T) can be obtained based on an estimate of the 
standard deviation of the single-period-ahead forecast 
error, i.e., σe(T), where σe

2 ≡ Var [e1(T)]2 as follows: 

∆̂ (T) = eσ (T) / 1.25 (8.9) 

 
1 The equation numbers used here are according to those used 
in the reference [14]. 
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An estimate of the variance of the single-period-ahead 
forecast error can be computed using the sample 
variance of the last N forecast errors: 

[ ]21 1
2  = +1

e (t) e (T)
σ (T)=

1N
−

−

−

∑
T

t T N
e  (8.7) 

where e1(T) is the average of the last N errors and is 
defined as follows” [14, chapter 8, with some sentences 
modified]: 

1 1
 = +1

1e (T) e (t)
N −

= ∑
T

t T N

 (8.5) 

“The 1-period-ahead forecast error for the period T is 
defined as: 

e1 (T) = xT – X̂ (T – 1) (7.6) 

where xT is the input value and X̂ (T – 1) is the forecast 
value for period T computed at the end of period T – 1” 
[14, chapter 7, with a sentence modified]. 

“Suppose we know that the average level of the input 
values do not change over time or it changes very 
slowly. In this case, a simple exponential smoothing for 

a constant process can be developed and it might be 
modeled as: 

x t = b + ε t 

where b is the expected input value in any period and ε t 
is a random component having mean 0 and variance σε

2. 
Thus it can be shown that the forecast for input value in 
any future period T + τ would be 

xT+τ = ST (4.6) 

where ST is an estimator for the unknown parameter b in 
the constant process. ST is shown to obtain using the 
following equation: 

ST = δ xT + (1 – δ) ST – 1 (4.1) 

by assuming S0 = x0. Equation (4.1) is called ‘simple 
exponential smoothing’ and ST is called smoothed 
statistic. The fraction δ is also called the smoothing 
constant.” [14, chapter 4, with some sentences 
modified]. 

In the background algorithm, for the first 5 to 6 
initial frames, a fixed value is used for δ in equation 
(4.1) (e.g. δ = 0.1). Then δ is replaced by α(T) as 
computed using equation (9.4) stated above for all the 
succeeding frames. 
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