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Abstract 

In this paper, we obtain the upper exponential bounds for the tail probabilities 
of the quadratic forms for negatively dependent subgaussian random variables. In 
particular the law of iterated logarithm for quadratic forms of independent 
subgaussian random variables is generalized to the case of negatively dependent 
subgaussian random variables. 

 
Keywords: Negatively dependent; Quadratic forms; Subgaussian random variable; Iterated logarithm 

 
 

 
* E-mail: bozorg@math.um.ac.ir 

1. Introduction 

Let { }, 1nX n ≥  be a sequence of subgaussian 
random variables and let ( ),ijA a=  , 1, 2,...i j =  be an 
array of real numbers and ( ),n ijA a=  , 1, 2,...,i j n= . 

We define the quadratic forms (Q.F) T
n nQ A= n nX X , 

where 1( ,..., )T
nX X=nX . Without loss of generality we 

may assume that nA  is symmetric. For a matrix 

( ),ijB b=  , 1, 2,...,i j n= , 2 2

, 1
|| ||

n

ij
i j

B b
=

= ∑  and 2 ( )Bµ  

is the largest eigenvalue of TB B . Moreover ( )tr B  and 
( )r B  stand for trace of B  and rank of B , 

respectively, and 1( ,..., )ndiag α α  denotes the diagonal 
matrix with diagonal elements 1,..., nα α . Some 
exponential bounds for the tail probabilities of Q.F’s 
have been studied by Mikosch [7] for the case where 

{ }, 1nX n ≥  is an independent subgaussian random 
variables. The limit behaviors of Q.F’s have been 
studied by many authors such as Krentsberg [6], Gotze 
and Tikhomirov [5], Giraitis and Taqqu [4]. In this 
paper we extend some exponential bounds for the tail 
probabilities of Q.F’s for negatively dependent (ND) 
subgaussian random variables. Then by using these 
inequalities we obtain the law of the iterated logarithm 
(LIL) and some probability inequalities for Q.F’s. 
 
Definition 1.  The random variables 1,..., nX X  are said 
to be ND if we have 

11

[ ( )] ( )
n n

j j j j
jj

P X x P X x
==

≤ ≤ ≤∏∩ , 

and 

11

[ ( )] ( )
n n

j j j j
jj

P X x P X x
==

> ≤ >∏∩ , 
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for all 1,..., nx x R∈ . An infinite sequence { }, 1nX n ≥  
is said to be ND if every finite subset 

1
,...,

ni iX X  is 

ND. 
The following lemmas are listed for reference in 

obtaining the main results in the next sections. Detailed 
proofs can be found in Taylor and Chung Hu [9], 
Buldying and Kozachenco [2], Bozorgnia, Patterson and 
Taylor [1], Mikosch [7], Chung [3]. 
 
Lemma 1.1.  ([1]) Let { }, 1nX n ≥  be a sequence of ND 

random variables and { }, 1nf n ≥  be a sequence of Borel 
functions all of which are monotone increasing (or all 
are monotone decreasing). Then { }( ), 1n nf X n ≥  is a 
sequence of ND random variables. 
 
Lemma 1.2.  ([1]) Let 1,..., nX X  be a finite sequence 
of ND random variables and 1,..., nt t  be all nonnegative 
(or nonpositive) then 

1

1

[ ] [ ]
n

i ii i i

n
t X t X

i

E e E e=

=

∑ ≤∏  

Definition 2.  A symmetric random variable X  is said 
to be subgaussian (SG) random variable if there exists a 
nonnegative real number α  such that for each real 
number t, 

2 2

exp[ ]
2

tX tEe α
≤ . (1.1) 

The number 
2 2

( ) inf{ 0 : ( ) exp[ ]
2

tX tX E e ατ α= ≥ ≤ , 

}t R∈  will be called the Gaussian standard of the 
random variable X . It is evident that X  will be a 
subgaussian random variable if and only if ( )Xτ < ∞ . 
Moreover 

1/ 2
2

0

2 ln( ( ))( ) sup[ ]
tX

t

E eX
t

τ
≠

= , 

and inequality (1.1) hold for ( )Xα τ= . A subgaussian 
random variable X  always satisfies the relations 

( ) 0E X =  and 2 2( ) ( )E X Xτ≤ . If 2 2( ) ( )E X Xτ= , 
then X  is called strictly subgaussian. 
 
Lemma 1.3.  ([9]) If X  is a subgaussian random 
variable with ( )Xτ α≤ , then 

2 2
| |[ ] 2exp[ ]

2
t X tE e α

≤ . 

Lemma 1.4.  ([7]) For a positive matrix B  of 
dimension k k× , 

2exp( ) ( )
k

T h

R
h B e q d= ∫ Z yZ Z y y

T

, kR∀ ∈Z , 0h > , 

where ( )q y  is the density of a k-dimensional Gaussian 
vector with mean zero and variance matrix B . 
 
Lemma 1.5.  ([3]) If { }, 1nE n ≥  is a sequence of events 
then 

( . ) lim ( )n nP E i o P E≥ . 

2. Exponential Bounds for Tail Probabilities 

In this section we obtain upper exponential bounds 
for the probabilities [ ]nP Q x>  and *[ ]nP Q x> , for 
every 0x > . Put ( )i iXα τ= , 1( ,..., )n nV diag α α= , 

24 || ||n n n nB V A V= , ( )n n n nV A Vµ µ=  and 
* 2 ( )n n n n nQ Q tr V A V= − . 
Throughout the sections 2 and 3 we suppose that 

{ }, 1nX n ≥  is a sequence of ND subgaussian random 
variables. Since some proofs are the same as Mikosch 
[7], we abbreviate them. In fact we obtain upper bounds 
that are greater than upper bounds in Mikosch [7], but 
these inequalities imply our main results for ND 
subgaussian random variables. The following lemmas 
play an essential role in obtaining our results. 
 
Lemma 2.1.  Let { }, 1nX n ≥  be a sequence of ND 
subgaussian random variables with ( ) 1nXτ ≤  for all 
n . Let nA  be a positive semidefinite matrix and 

T
n nQ A= n nX X . Then 

1

1[exp( )] exp( ln(1 4 ))
2

n

n j
j

E hQ hλ
=

≤ − −∑ , 

where 0 1/ 4 nh µ≤ ≤  and 1,..., nλ λ  are the eigenvalues 
of nA . 
 
Proof.  Similar to the notation Lemma 1.2 of Mikosch 
[7], let ( ) 0nr A k= > , there exists an orthogonal matrix 
U  such that T

nA U LU=  and 1( ,..., ,kL diag λ λ=  
0,..., 0)  where 1,..., kλ λ  are positive eigenvalues of nA . 
Then 

T
0

T
nA V L V=n nX X , 
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where 

1(( ) ,....( ) )kV U U= n nX X ,  0 1( ,..., )kL diag λ λ= . 

By Lemma 1.4 for sufficiently small 0h > , 

2[ ] ( )d( )
T

n
k

hQ hV

R
Ee E e q= ∫ y y y , (2.1) 

and 

2

1 1

1 1

exp( 2 )

{exp( 2 2 )} ,

T
n k

hV
j i ij

j i

n n

j j j j
j j

Ee E h X y u

E h X h Xγ γ

= =

+ −

= =

=

= −

∑ ∑

∑ ∑

y

 

where 
1

k

j i ij
i

y uγ
=

= ∑ , max{0, }j jγ γ+ =  and jγ
− =  

max{0, }jγ . Now by Cauchy Schwarz inequality we 
have 

2

1/ 2

1 1

{ exp(2 2 ) exp( 2 2 )}

ThV

n n

j j j j
j j

Ee

E h X E h Xγ γ+ −

= =

≤ −∑ ∑

y

 

2 2 2 2 1/ 2

1 1

[ ( ) ( )]j j j j
n n

h X h X

j j

E e E eγ γ+ −−

= =

≤ ∏ ∏  

2 24 4 1/ 2 2

1 1

[( )( )]j j
n n

h h h

j j

e e eγ γ+ −

= =

≤ =∏ ∏
Ty y . (2.2) 

The second inequality holds by Lemma 1.2 and third 
inequality is true by Lemma 1.3. Now by (2.1) and 
(2.2), similar to the proof of Lemma 1.2 in [7], we have 

2h ( )n
k

hQ

R
Ee e q d≤ ∫ y y y y

T

 

1/ 2 1/ 2 2
0

1

1 41(det ) (2 ) exp( ) ( )
2k

k
i

iR
i i

hL y dλπ
λ

− −

=

−−
= ∑∫ y  

1

1exp( ln(1 4 )
2

n

i
i

hλ
=

−
≤ −∑ , (2.3) 

 
where 0 4 max 1ii n

h λ
≤

< < . 
 
Lemma 2.2.  Let { }, 1nX n ≥  be a sequence of ND 
subgaussian random variables and nA  be a positive 
semidefinite matrix. Then for 0 1/ 4 nh µ≤ ≤ , 

* 2 42exp( (1 . ))
3 1 4

nhQ n
n

n

hEe h B
h
µ
µ

≤ +
−

, (2.4) 

where 2

1

4
n

n i
i

B λ
=

= ∑ . 

 
Proof.  By transformation /j j jX X α↔ , we assume 
that 1jα =  for all j . 

By Lemma 2.1 we have 

*

1

1exp( 2 ( ) ln(1 4 ))
2

n

n
hQ

n i
i

Ee tr A hλ
=

≤ − − −∑ . (2.5) 

In the other hand 

1

2 2

1exp( 2 ln(1 4 ))
2

2exp(4 (1 (4 (4 ) ...)))
3

n

i i
i

i n n

h h

h h h

λ λ

λ µ µ

=

− − −

≤ + + +

∑
 

2 2 42exp(4 (1 . ))
3 1 4

n
i

n

hh
h
µλ
µ

= +
−

, (2.6) 

for 0 1/ 4 nh µ≤ ≤ . Now (2.4) obtain of (2.5) and (2.6). 
 
Theorem 2.1.  Let { }nA  be a sequence of positive 
semidefinite symmetric matrices. Then for every 
0 1δ< <  the following inequalities are true for all n : 

(A) 
2

* 12 22[ ] exp( (1 . (1 ) ))
4 3

n n
n

n n n

y yyP Q y
B B B

µ µ −> ≤ − − − , 

for 0 ((1 ) / 2 )n ny Bδ µ≤ ≤ − . 
(B) 

* (1 ) 2(1 )[ ] exp( (1 ))
8 3n

n

yP Q y δ δ
µ δ
− −

> ≤ − − , 

for ((1 ) / 2 )n ny Bδ µ≥ − . 
(C) 

* (1 )[ ] ( ) exp( )
2n

n

yP Q y C
B
δδ −

> ≤ − , 

for some constant ( ) 0C δ >  and all 0y > . 
 
Proof.  Method of the proof is the same as proposition 
1.1 [7] in the case of independent. 
 
Corollary 2.1.  Under the assumptions of Theorem 2.1, 

)i   If { }ny  is a sequence of positive real numbers such 
that / 0n n ny Bµ → , then for every 0 1δ< <  and 
sufficiently large n , 
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2
* (1 )

[ ] exp( )
4

n
n n

n

y
P Q y

B
δ−

> ≤ − . 

)ii   For every 0y > , 
2

*[ ] exp( min( , ))
48 12n

n n

y yP Q y
Bµ

> ≤ − . 

Theorem 2.2.  Under the assumptions of Theorem 2.1 
the following inequalities are true: 

2
1

[ ]

2 22exp( (1 . (1 ) )) ,
4 3 2

n n

n n n

n n n n

P Q EQ y

y y t yy
B B B B

µ µ −

− >

≤ − − − +
 

for 0 ((1 ) / 2 )n ny Bδ µ≤ ≤ −  and 

[ ]

(1 )(1 ) 2(1 )exp( (1 ) ) ,
8 3 4

n n

n

n n

P Q EQ y

ty δδ δ
µ δ µ

− >

−− −
≤ − − +

 

for ((1 ) / 2 )n ny Bδ µ≥ − , where 2

1

2
n

n ii i
i

t a α
=

= ∑  

1 1

( , )
n n

ij i j
i j

a Cov X X
= =

−∑∑ . 

 
Proof.  By Markov inequality and (2.4) for every n  and 

0y > , we have 

( )[ ] n nh Q EQhy
n nP Q EQ y e Ee −−− > ≤  

*exp( ( 2 ( ) ))hy
n n n n ne E h Q tr V A V EQ−= + −  

2 42exp( (1 . ) )
3 1 4

n
n n

n

h
hy h B ht

h
µ
µ

≤ − + + +
−

. (2.7) 

Hence by putting / 2 nh y B=  and 1
4 n

h δ
µ
−

=  for 

0 ((1 ) / 2 )n ny Bδ µ≤ ≤ −  and ((1 ) / 2 )n ny Bδ µ≥ − , 
respectively, the proof is completed. 

3. An Application to the LIL 

In this section by using the notations of section 2 and 
Theorems 2.1 and 2.2, we prove a law of the iterated 
logarithm for quadratic forms in the case that 
{ }, 1nX n ≥  is a sequence of ND subgaussian random 
variables. 
 
Theorem 3.1.  Let { }, 1nX n ≥  be a sequence of ND 

subgaussian random variables and { }nA  be a sequence 
of positive semidefinite symmetric matrices, nB →∞  
and T

n nQ A= n nX X . Then 
)i  

*

1

lim 1
( )

nQ
nχ

≤ . . .1w p . 

)ii   If 
1/ 2

2(( / log ) )n n no B Bµ = , (3.1) 

and 
1/ 2

2(( / log ) )n n nt o B B= , (3.2) 

then 

2

lim 1
( )

n nQ EQ
nχ

−
≤ . . .1w p . 

where 
1/ 2 1/

2(2 ) log i
i n nB Bχ =  1, 2i = . (3.3) 

With 2log log logx x=  and log max{1, ln }x x= , 
for any 0x > . 
 
Proof.  )i  By Theorem 2.1 for 1( )y nχ=  and 

(0,1)δ ∈  we have 

*
1 2

(1 )[ ( )] ( )exp( log )
2n nP Q n C Bδχ δ −

> ≤ − , 

and 

*
1 2

(1 )[ ( )] 1 ( )exp( log )
2n nP Q n C Bδχ δ −

≤ ≥ − − . 

Since nB →∞ , we have 

*
1lim [ ( )] 1nn

P Q nχ≤ = . 

Hence by Lemma 1.5, 

*

1

[ 1 . ] 1
( )

nQP i o
nχ

≤ = . 

)ii   Let 2 ( )y nχ=  and (0,1)δ ∈ . Since nµ =  

1 / 2

2

(( ) )
log

n

n

B
o

B
, then there exists 0N >  such that for 

every n N≥  and 0ε > , 
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1/ 2
2(log )n n

n

B
B

µ
ε≤ . 

Since ε  is arbitrary, by (3.3) we can assume 
0 ((1 ) / 2 )n ny Bδ µ≤ ≤ − . 

Now with substituting the value y  of (3.3) into 
Theorem 2.2 we have 

2[ ( )]n nP Q EQ nχ− >  

1/ 22
2

log 2 2exp( (1 (log )
8 3

n
n n

n

B
B

B
µ≤ − −  

1/ 2
122 (log )

(1 ) )n n

n

B
B

µ −−  

1/ 2
2(log )

).
4

n
n

n

B
t

B
+  

Hence by (3.1) and (3.2), 

2

12

[ ( )]

logexp( (1 (1)(1 (1)) ) (1))
8

n n

n

P Q EQ n

B o o o

χ

−

− >

≤ − − − +
 

Since nB →∞  as n →∞ , the right side of the last 
inequality tends to zero and so 

2lim [ ( )] 1n nn
P Q EQ nχ− ≤ = . 

Hence by Lemma 1.5, 

2

[ 1 . ] 1
( )

n nQ EQP i o
nχ

−
≤ = . 

This completes the proof. 

For subgaussian sequence of ND random variables 
we have the following example. 
 
Example.  Let { }, 1nX n ≥  be a sequence of standard 
normal distributions such that ( , ) 0i jCov X X ≤ , for 
each i j≠ , then it is a sequence of ND strictly 
subgaussian random variables with ( ) 1iXτ = , hence 

2

1
1/ 2

2

2
lim 1

(8 ) log 4

n

i
i

X n

n n
=

−
≤

∑
. . .1w p . 
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