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Abstract 

In a celebrated work by Shao [13] several inequalities for negatively associated 
random variables were proved. In this paper we obtain some maximal inequalities 
for associated random variables. Also we establish a maximal inequality for 
demimartingales which generalizes and improves the result of Christofides [4]. 
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1. Introduction 

Definition 1.1.  A finite family of random variables 
{ , 1 }iX i n≤ ≤  is said to be associated if for any two 
coordinatewise non-decreasing functions f and g on Rn 

1 1( ( ,..., ), ( ,..., )) 0n nCov f X X g X X ≥ , 

assuming of course that covariance exists. An infinite 
family of random variables is said to be associated if 
every finite subfamily is associated. 

This definition was introduced by Esary et al. [5] as 
an extension of the bivariate notion of positive quadrant 
dependence of Lehmann [7]. Associated random 
variables have found many applications especially in 
reliability theory. Many authors have studied this 
concept providing interesting results and applications 
[2,8-10,12]. 

 
Definition 1.2.  Let 1 2, ,...S S  be a 1L  sequence of 
random variables. Assume for all 1,2,...j =  

1 1[( ) ( ,..., )] 0j j jE S S f S S+ − ≥ , (1.1) 

for all coordinatewise nondecreasing functions f such 
that the expectation is defined. Then { , 1}jS j ≥  is 

called a demimartingale. If in addition the function f is 
assumed to be nonnegative, then sequence { , 1}jS j ≥  
is called a demisubmartingale. 

 
Remark.  If the function f is not required to be 
nondecreasing then (1.1) is equivalent to the condition 
that { , 1}jS j ≥  is a martingale with the natural choice 
of σ-fileds. Similarly, if f is assumed to be nonnegative 
and not necessarily nondecreasing (1.1) is equivalent to 
the condition that { , 1}jS j ≥  is a submartingale. 

Demimartingale was introduced by Newman and 
Wright [10]. Proposition 2 of Newman and Wright 
shows that partial sum of a sequence of mean zero 
associated random variables is demimartingale [10]. 
Chow proved a maximal inequality for submartingales 
which contains the Hajek-Renyi inequality and other 
inequalities as special cases [3]. Christofides showed 
that Chow's maximal inequality for submartingales can 
be extended to the case of demisubmartingales [4]. We 
prove a maximal inequality for demimartingales which 
generalizes and improves the result of [4]. 

2. Main Results 

The main purposes of this paper are to establish some 
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maximal inequalities for associated random variables 
(Theorem 2), also a maximal inequality for demimartin-
gales which generalizes and improves the result of [4]. 
To prove the main results we will need the following 
two lemmas. The proof of Theorem 1 is based on the 
following lemmas. 

 
Lemma 1.  Let 1 2, ,...S S  be a demisubmartingale (or a 
demimartingale) and g a nondecreasing convex function 
then 1 2( ), ( ),...g S g S  is a demisubmartingale. 

For proof see [4]. 
The following lemma is in [13]. 
 

Lemma 2.  For any 0x ≥ , 

2

2

2ln(1 ) (1 ln(1 )).
1 32(1 )

x xx x
x x

+ ≥ + + +
+ +

 

The main results are the following. 
 

Theorem 1.  Let { , 1 }iX i n≤ ≤  be a sequence of 
associated random variables with finite second 

moments. Let 
1

j

j i
i

S X
=

= ∑ , 0nES ≤  and 2 2
n ns ES= . 

If ( ) 1n nP S c≤ = , 1n ≥  where 0 nc< ↑ , then for 
any 0x > , 

1

2

2 2

(max )

2exp{ [1 ln(1 )]}.
32( )

jj n

n

n n n

P S x

xcx
s xc s

≤ ≤
≥

≤ − + +
+

 (2.1) 

 
Proof.  Noting that 2( 1 ) /xe x x− −  is a non-decreasing 
function of x on R, for any 0t > , we have 

2
2

2
2

2
2

11 [( ) ]

11 ( )

1exp{ ( )}.

n
n

n

n

tS
tS n

n n
n

tc
n

n
n

tc
n

n
n

e tSEe tES E S
S

e tc s
c

e tcs
c

− −
= + +

− −
≤ +

− −
≤

 

Consequently, by Lemma 1 observing that 
{ , 1,.., }jtSe j n=  is a demisubmartingales, the Doob's 
inequality for demisubmartingale ([4]) guarantees that 
for any 0t > , 

1 1

2
2

(max ) (max ) ( )

1
exp{ ( )}.

j n

n

tS tStx tx
jj n j n

tc
n

n
n

P S x P e e e Ee

e tc
tx s

c

−

≤ ≤ ≤ ≤
≥ = ≥ ≤

− −
≤ − +

 

Setting 

2

1 ln(1 )n

n n

xc
t

c s
= +  

in the right-hand side of the last inequality, we obtain 

1

2

2

(max )

exp{ (1 ) ln(1 )}.

jj n

n n

n n n n

P S x

x x s xc
c c xc s

≤ ≤
≥ ≤

− + +
 (2.2) 

By Lemma 2, we have 

2

2

2

2

2
2 2

2

2 2

(1 ) ln(1 )

(1 ){
( )

1 2( ) [1 ln(1 )]}
2 3

2[1 ln(1 )],
2( ) 3

n n

n n n

n n

n n n n

n n

n n n

n

n n n n

x s xc
c xc s

x s xc
c xc s xc

xc xc
s xc s

x x xc
c s xc s

+ +

≥ +
+

+ + +
+

= + + +
+

 

this proves (2.1), by (2.2). 
 

Theorem 2.  Let { , 1 }iX i n≤ ≤  be a sequence of 
associated random variables with zero means and finite 

second moments. Let 
1

j

j i
i

S X
=

= ∑  and 2 2
n ns ES= . Then 

for all 0x > , 0a > , 

1 1

2

2 2

(max ) (max )

2exp{ [1 ln(1 )]}
2( ) 3

j jj n j n

n n

P S x P X a

x nax
s nax s

≤ ≤ ≤ ≤
≥ ≤ >

+ − + +
+

 (2.3) 

and 

1 1

2

2 2

(max | | ) 2 (max | | )

22exp{ [1 ln(1 )]}.
2( ) 3

j jj n j n

n n

P S x P X a

x nax
s nax s

≤ ≤ ≤ ≤
≥ ≤ >

+ − + +
+

 (2.4) 

In particular, we have 
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1 1

2 2 6

2 2

(max | | ) 2 (max | | )

2exp{ ) 2 .
4

j jj n j n

x
na

n

n n

P S x P X a

x s
s s nax

≤ ≤ ≤ ≤
≥ ≤ >

⎛ ⎞
+ − + ⎜ ⎟

+⎝ ⎠

 (2.5) 

Proof.  Clearly 

1 1

1

(max | | ) (max )

(max( ) ).

j jj n j n

jj n

P S x P S x

P S x

≤ ≤ ≤ ≤

≤ ≤

≥ ≤ ≥

+ − ≥
 

Since { , 1 }iX i n− ≤ ≤  is a sequence of associated 
random variables with zero means and finite second 
moments, so (2.4) is a direct consequence of (2.3). 

(2.5) follows from (2.4) easily, considering whether 
2
ns nax≤  or 2

ns nax> . We need only to prove (2.3). 

Let min( , )i iY X a= , 1,...,i n= , 
1

n

j j
i

T Y
=

= ∑ . We have 

1 1

1 1

1 1

(max ) (max )

(max , max )

(max ) (max ).

j jj n j n

j jj n j n

j jj n j n

P S x P X a

P X a S x

P X a P T x

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

≥ ≤ >

+ ≤ ≥

≤ > + ≥

 (2.6) 

It is easy to show that { , 1 }iY i n≤ ≤  is associated 
sequence with 0iEY ≤  (see (4)P  in [5]). Applying 
Theorem 1 with nc na= , we obtain 

2

2 21

2(max ) exp{ [1 ln(1 )]}
2( ) 3jj n

n n

x naxP T x
s nax s≤ ≤

≥ ≤ − + +
+

, 

this proves (2.3), by (2.6). 
The following theorem is a maximal inequality for 

demimartingales that generalizes and improves the 
result of [4]. 

 
Theorem 3.  Let 0 1 2, , ,...S S S  be a demimartingale, with 

0 0S = . Let g be a non-decreasing convex function on 
R +  with (0 ) 0g + = , ( ) ( ) ( )g xy g x g y≤  for every 
positive x and y and let { , 1}nc n ≥  be a non-increasing 
sequence of positive numbers. Then for every 0x > , 

1

1

1( max ) { ( ) ( ( ))
( )

[( ( ) ( )) ( ( )) ]}.

j j n nm j n

n

j j j
j m

P c S x g c E g S
g x

g c g c E g S

+

≤ ≤

−
+

+
=

≥ ≤

+ −∑
 (2.7) 

Remark 1.  For the case of independent random 
variables see [11, p. 57]. 

Remark 2.  Taking ( )g x x= , 1m =  in (2.7) provides 
the inequality in Theorem 2.1 of [4]. 

 
Proof of Theorem 3.  Let {max }j jm j n

A c S x
≤ ≤

= ≥ . Then 

A can be written as n
j m jA A== ∪ , where 

{ , , }j i i j jA c S x m i j c S x= < ≤ < ≥ , ,m j n≤ ≤  the 

jA 's are disjoint. Therefore, 

( ) ( ) ( ) ( ) [ ( ) ( )]

[ ( ) ( )]

[ ( ) ( ) ( )]

[ ( ) ( ) ( )].

n n

j j
j m j m

n

j j j
j m

n

j j j
j m

n

j j j
j m

g x P A g x P A E g x I A

E g c S I A

E g c g S I A

E g c g S I A

= =

=

=

+

=

= =

≤

≤

=

∑ ∑

∑

∑

∑

 

The rest of proof is similar to the proof in Theorem 
2.1. of [4]. 

3. An Application for the Complete 
Convergence 

Complete convergence gives a convergence rate with 
respect to the strong law of large numbers. One can 
refer to [1,6] for details. Applying the maximal 
inequality (2.5), one can get the following result easily. 

 
Theorem 4.  Let 1 2p≤ ≤ , 1pr ≥ , and let { , 1}nX n ≥  
be a strictly stationary associated sequence with 

0nEX = , | |pnE X < ∞ , and 

2 2
1 1

2

: 2 j
j

EX EX Xσ
∞

=

= + < ∞∑ . 

Then for all 0ε > , 

2 1

11

(max | | )rp r
jj nn

n P S nε
∞

− +

≤ ≤=

≥ < ∞∑ . 

 
Proof.  Note that 2 2

ns nσ≤ . Applying (2.5) with 

1rx nε += , and ra kn= , where (2 1)
6
rk
pr

ε +
= , we 

obtain the result. 
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