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Abstract 

The spatial distribution of saturated hydraulic conductivity based on data measured 
or observed at well locations is necessary for the numerical simulation of various 
ground water flow and transport problems. An Artificial Neural Network (ANN) 
model for estimating of hydraulic conductivity of a saturated granular porous medium 
from easily measured grain size distribution curve was developed and tested. Five 
types of porous media are considered in this work: loamy sand, sand, sandy-loam, 
sand-clay-loam, and silt-clay-loam family. The application of artificial neural network 
technology for estimating of saturated hydraulic conductivity from grain size 
distribution curve has been investigated. It has been found that reasonable estimates 
of this parameter can be obtained with the help of a network that uses the percent 
finer of the aquifer material as the input neurons, and the logarithm of the hydraulic 
conductivity value as the output neuron. A better estimate is obtained with a model 
that takes into account the logarithm of sigmoid function in hidden layer as a 
transform function. The artificial neural network models are found to give better 
estimates of saturated hydraulic conductivity of the individual group of soil as input 
neuron rather than all type of soil groups as input neuron for training step. For the 
loamy sand soils, the prediction of hydraulic conductivity was the best estimator. A 
comparison between the measured values of hydraulic conductivity of an unconfined 
Aquifer in Zahedan by pumping test and predicted value from their grain size 
distribution curve using the artificial neural network model shows a reasonable 
estimate of this parameter when using the model which trained by loamy sand data. 
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Introduction 

It is evident from Darcy experiment that saturated 
hydraulic conductivity is a function of properties of both 

the porous medium and the fluid flowing through it. 
Based on this relationship, during the past century, 
numerous investigators have studied the correlation 
between hydraulic conductivity or permeability and 
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grain-size distribution of saturated materials to generate 
practical formulas for the estimation of these quantities. 
These formulas are useful especially during the initial 
stages of many aquifers studies, such as designing 
aquifer pump tests and estimation of some other 
quantities, if measured hydraulic conductivities under 
field conditions are not available. However, grain-size 
distribution data can be available in a relatively cheaper 
and faster manner. 

Particle size is an important parameter in numerous 
civil, environmental, and petroleum engineering 
applications. In ground-water flow, the size of 
individual particles comprising the soil affects the soils 
pore size distribution and, hence, the important flow 
characteristics such as hydraulic conductivity and head 
loss. In addition to affecting the pore size distribution, 
particle size determines the total surface area available 
for sorption and other surface reactions affecting the 
fate and transport of subsurface contaminants. For filters 
used in water and waste-water treatment, particle size 
determines the total surface area and pore geometry for 
solids removal by straining, sedimentation, interception, 
and diffusion. Additionally, petroleum geologists are 
concerned with the effect of pore size characteristics on 
the ability to pump petroleum from an aquifer. 

This research is a comparison between neural 
network model estimates of hydraulic conductivity of 
granular materials for various groups of soils. 

Artificial neural network (ANN) is a relatively new 
technology based on the processes of the biological 
brain and has many human-like qualities (Kohonen, 
1989). Since a neural computer learns from data, it does 
not need to be programmed with fixed rules or 
equations. It provides a radically different way of 
producing rapid solutions to complex problems. It has 
the ability to turn data into internally held relationships 
which can be analyzed and viewed later. The neural 
approach solves problems in a uniquely different way. 
Neural computers learn the key relationships in the data 
and then generalize from those relationships, building 
their own "rules". These can then automatically produce 
predictions or estimates based upon their experience. 

Artificial neural network (ANN) technology is a 
relatively recently developed method, where the pattern 
recognition capability of the brain is simulated in 
creating a weighted matrix through trial-and-error 
cycles. The weighted matrix can be used later in 
identifying a given data pattern, classifying objects, or 
in estimating a dependent parameter. Details of the 
principles of the neural networks have been elaborated 
[11]. An evolutionary history of ANN models and basic 
principles on which they work have been presented 
[16]. 

The basic model of a neural network consists of sets 
of neurons distributed over input, hidden, and output 
layers. Each neuron in the input layers represents one of 
the independent variables, those in the output layers 
represent dependent variables, and the neurons in the 
hidden layers act as an associative memory of weights 
that connect the input neurons to the output neurons. 

The first step in the designing a neural network is the 
identification of the variables that produce patterns that 
can be associated with certain distinctive outputs. These 
variables act as input neurons and the answers that are 
being sought are the output neurons. This is an almost 
intuitive process aided by trial-and-error procedure. 

Relationship between Hydraulic  
Conductivity and Grain Size 

In the following sections, some of the well-known 
equations as well as the new approaches which have 
been developed during the past decade are presented. 
These equations relate the saturated hydraulic 
Conductivity of granular materials to their Grain Size 
Distribution Curves are presented. 

Hazen Equation 

Hazen's approximation, which is a simple 
relationship, is based on Equation 1 [8]. Freeze and 
Cherry (1979) give the following empirical relation due 
to [8] for hydraulic conductivity estimates [7]: 

2K cd=  (1) 

where the units of K and d10 are cm/s and mm, 
respectively, and c = 1.0. 

Shepherd Equation 

Shepherd (1989) performed statistical power regre-
ssion analyses on 19 sets of published data on hydraulic 
conductivity vs. grain size using the Equation 2 [14]: 

bK ad=  (2) 

where K is hydraulic conductivity, d is grain diameter,  
a and b are some parameters According to the results of 
Shepherd, values of the coefficient a ranged from 
(4.79X10-2 to 9.86 cm/s). The exponent b 
(dimensionless) ranged from 1.11 to 2.05, with an 
average of 1.72. The higher values of coefficient a 
correspond to more texturally mature samples; the 
lowest values of exponent b correspond to texturally 
immature sediments. 
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Kozeny-Carman Equation 

One of the most widely accepted derivations of 
permeability as a function of the characteristics of the 
medium was proposed by Kozeny (1927) and later 
modified by Carman (1956) [4,10]. The Kozeny-
Carman equation according to [2] is: 

( )

23

2 1801
mdg nK

n
ρ
µ

⎡ ⎤⎛ ⎞⎛ ⎞
⎢ ⎥= ⎜ ⎟⎜ ⎟
⎢ ⎥−⎝ ⎠ ⎝ ⎠⎣ ⎦

 (3) 

where K is hydraulic conductivity, ρ is the density of 
water, g is the acceleration of gravity, µ is the dynamic 
viscosity, n is porosity, and dm is a representative grain 
size. Equation 3 is dimensionally correct and suitable 
for application with any consistent set of units. 

Fair and Hatch Equation 

Based on dimensional considerations and 
experimental verification, the following equation for the 
estimation of hydraulic conductivity was [2,5]: 

( )
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∑
 (4) 

where K is hydraulic conductivity; ρ is the density of 
water; g is the acceleration of gravity µ is the dynamic 
viscosity; n is porosity; β is a packing factor, found 
experimentally to be about 5; a is a sand shape factor, 
varying from 6.0 for spherical grains to 7.7 for angular 
grains; Pm is percentage of sand held between adjacent 
sieves; dm is the geometric mean diameter of the 
adjacent sieves; m is a dummy variable; and N is the 
number of the percentages held between adjacent sieves. 

Alyamani and Sen Equation 

The equations presented above, which relate the 
hydraulic conductivity to grain-size distributions, are 
based on a single parameter, such as the effective grain 
diameter for the Hazen equation, representative grain 
diameter for the Kozeny-Carman equation and the 
geometric mean diameter for the Fair and Hatch 
equation. In the equations presented by Shepherd, the 
grain diameter is a variable. As an alternative, Alyamani 
and Sen (1993) proposed the following equation based 
on analysis of 32 samples from Saudi Arabia and 
Australia that incorporates the initial slope and the 
intercept of the grain-size distribution curve [1]: 

( ) 2

0 50 101300 0.025K I d d⎡ ⎤= + −⎣ ⎦  (5) 

where K (unit m/day) is hydraulic conductivity and Io 
(unit mm) is the x intercept of the slope of the line 
formed by d50 and d10 of the grain-size distribution 
curve. Here, d50 is the effective grain size where 50% of 
particles are finer than d (mm). The linear x and y 
coordinates of the grain-size distribution curve are the 
"grain size" in mm and "percent finer", respectively. 
The intercept occurs where the observed straight line 
crosses the horizontal axis. The value of the x intercept 
is expected to be very close to zero or to the effective 
grain diameter. Physically, this means that there is no 
passing material from the set of sieves. The higher  
the x-intercept values, the higher the hydraulic 
conductivities. 

Properties of Alyamani and Sen Equation, Equation 
5. 1)  In general, Io is very close to the value of d10. 
2)  From Equation 5, it can be said that the hydraulic 
conductivity, K, is proportional to d10, which is the base 
of the Hazen equation as given by Equation 1. In other 
words, the Hazen equation, Equation 1, is a special case 
of the Alyamani and Sen equation, Equation 5. 3)  The 
appearance of difference (d50 ~ d10) in Equation 5 
implies that the hydraulic conductivity is proportion to 
the dispersion of grain size. 

Evaluation of the Equations 

Sperry and Peirce (1995) performed an evaluation by 
comparing the measured K values of different porous 
materials with those determined from their own 
equations as well as the equations of Hazen, Kozeny-
Carman and Alyamani and Sen [15]. Sperry and Peirce 
(1995) reached the following conclusions for the tested 
materials [15]: (1) Overall, the Hazen equation provides 
the best estimate of the hydraulic conductivity of the 
media studied, except for irregularly shaped particles. 

The values determined from the Hazen model are 
within a factor or two of the experimental values, except 
for irregularly shaped particles for which the values are 
within 330% of the experimental values. This reflects 
the fact that the Hazen equation is not convenient for 
irregularly shaped particles. (2) The Kozeny-Carman 
equation estimates are 73% to 83% lower than the 
measured hydraulic conductivity for the filter pack 
sands. (3) The Alyamani and Sen equation estimates are 
30% to 36% greater for the same media. 

Results from this section show the importance of 
grain size distribution curves for prediction of hydraulic 
conductivity of porous materials with regular grain 
shape. Hence the separation of soil types for artificial 
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neural network models will improve the accuracy of 
predictions. 

Development of Backpropagation  
Neural Networks 

The backpropagation neural network (BPN) used in 
this research is the most widely used feedforward neural 
network system. The term backpropagation refers to the 
training method by which the weights of the network 
connection are adjusted. The calculations procedure is 
feedforward, from input layer through hidden layers to 
output layer. During training, the calculated outputs are 
compared with the desired values, and then the errors 
are backpropagated to correct all weight factors. The 
whole calculation procedure (for a three-layer BPN) is 
summarized as follows: 

1.  Randomly assign values between 0 and 1 to 
weights Wi,j (I) for each layer (I). All input-layer 
thresholds are assigned to zero, i.e. Ti,1 = 0 ; all hidden 
and output-layer thresholds are assigned to one, i.e., 
Ti,2 = 1, Ti,3 = 1.  

2.  Introduce the input Ii into the neural network, and 
calculate the output from the first layer according to the 
following equations: 

,1i i ix I T= +  (6) 

1 ( )i if xα =  (7) 

where f ( ) is the transfer function. 
3.  Obtaining the output from the first layer, calculate 

outputs from the second layer, using the equation: 

2 , ,1 ,2( ( (2) )
l

i j i j i
j

f W Tα α= +∑  (8) 

4.  Given the output from the second layer, calculate 
the output from the output-layer, using the following 
equations: 

3 , ,2 ,3( ( (3) )
l

i j i j i
j

f W Tα α= +∑  (9) 

3i iy α=  (10) 

Steps 1 to 4 represent the forward activation flow; 
that is, the given input values Ii move forward in the 
network, activate the nodes, and produce the actual 
output values yi based on the initially assumed values of 
interconnecting weights, Wi,j(I) and internal threshold, 
Ti,I. Obviously, the initial calculation will not produce 
the desired output values (di). The next few steps of the 
backpropagation algorithm represent the backward error 
flow in which the errors between the desired output di 

and the actual output yi flow backward through the 
network and try to find a new set of network parameters 
(Wi,j(I) and Ti). 

5.  Now backpropagate the error through the 
network, starting from the output layer and moving 
backward toward the input layer. Calculate the gradient-
descent term (δ1,3) using the following equations: 

,3 , ,2 ,3( (3) )
l

i j i j i
j

x W Tα= +∑  (11) 

,3
( )

( ) i
i i i

i

f x
d y

x
δ

∂
= −

∂
 (12) 

6.  Knowing the output-layer, (δ1,3) calculate (δ1,2) 
the gradient-descent term for the hidden layer (layer 2) 
using these equations: 

,2 , ,1 ,2( (2) )
l

i j i j i
j

x W Tα= +∑  (13) 

,2 ,3 ,
( )

(3) i
i k k j

k i

f x
W

x
δ δ

∂⎛ ⎞
= ⎜ ⎟ ∂⎝ ⎠
∑  (14) 

7.  Knowing the deltas for the hidden and output 
layers, calculate the weight changes, ∆Wi,j using the 
equation: 

, , , 1 ,( ) ( )i j new i j j i i j oldW I W Iηδ α α−∆ = + ∆  (15) 

where η is the learning rate, and α is the momentum 
coefficient. The momentum term is added to speed up 
the training rate. The momentum coefficient, α, is 
restricted to 0 < α < 1. 

8.  Knowing the weight changes, update the weights 
as: 

, , ,( ) ( ) ( )i j new i j old i j newW I W I W I= + ∆  (16) 

One iteration is completed so far. This feedforward 
calculation and error backpropagation procedure is 
repeated until the sum of errors is less than the specified 
value. This is the whole learning process for the neural 
network. The new weight factors are calculated from the 
old weight factors of the previous training iteration by 
the following general expression: 

, ,i j i jnew new

Learning input
W W

rate term

gradient descent momentum previous
correlation term coefficient weight change

⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎡ ⎤= + ×⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎣ ⎦ ⎣ ⎦

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
× × ×⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (17) 

Number of Hidden Layers = Number of Data 
Samples/(Input Layers + Output Layers) 

Next are several training parameters. These variables 
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impact how the net is trained. 
The Learning rate impacts how much weights are 

changed on each iteration. For this research it was found 
0.2. The Momentum Coefficient is a factor that impact 
how much the weight will be adjusted based on the 
weight changes in the previous iterations. For this 
research it was found 0.6. 

The last training parameter is the Convergence 
Criteria. This is the value of the normalized sum of 
errors. The training will iterate until the Convergence 
Criteria is reached or the Maximum Iterations is 
encountered. For this research it was set to 0.02. 

A stepwise procedure was followed in investigating 
the applicability of ANN technology in the estimation of 
the hydraulic conductivity of the porous media. The 
available softwares, Professional II/PLUS, 2000 and 
Neuro3, 2002, were used and compared in creating the 
neural network. The 168 grain size distribution curve 
and related saturated hydraulic conductivity values in 
cm/day derived from the UNSODA database were used 
for the study [6]. Within the scope of the present work 
have shown that better correlation of individual soils is 
obtained with the logarithm of the hydraulic 
conductivity instead of its raw value, and this has been 
used as the output variable (neuron). It sets apart 10% of 
the available input data, as test data and uses the rest as 
a training dataset. A stepwise process was followed in 
developing six neural network models with different 
type of soils as input neurons (variables). The trial and-
error method was followed in assigning the degree of 
tolerance in matching the ANN estimated values with 
the observed values of the logarithm of hydraulic 
conductivity and in deciding the percentage of match at 
which the training of the network can stop. A RMS 
error value of 0.02 was found to provide a trained 
network within a reasonable number of runs (<100,000) 
with an average training error of 5% or less. The 
performance of the network developed was checked 
against the test data. For accepting a network, a match 
of at least 95% of the training and test data were 
considered. 

Figure 1 shows the line plot of neural network 
estimated hydraulic conductivity (cm/d) and measured 
hydraulic conductivity (cm/d) from UNSUDA database 
for all group of soils [6]. 

After a few preliminary test runs, it was found that 
one hidden layer with 17 hidden neurons was giving the 
best overall performance, and these were accepted for 
all the networks developed. The characteristics of the 6 
models developed for five soils type are as follow: 

Model-1: Input neurons are the percent finer for 
particle size in Φ scale (3.3, 2.3, 2, 1.6, 1.3, 1, 0.6, 0.3) 
of loamy-sand. The number of training data: 23, number 

of test data: 12. The output neuron is the saturated 
hydraulic conductivity of loamy-sand (Fig. 2, a and b). 
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Figure 1.  Crossplots of neural network estimated hydraulic 
conductivity (cm/d) and measured hydraulic conductivity 
(cm/d) from UNSUDA database for all group of soils. 
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Figure 2.  (a) Model-1, Crossplots of neural network 
estimated hydraulic conductivity (cm/d) and measured 
hydraulic conductivity (cm/d) from UNSUDA database 
training by loamy sand data; (b) Mode-1, Crossplots of neural 
network estimated hydraulic conductivity (cm/d) and 
measured hydraulic conductivity (cm/d) from UNSUDA 
database training by all group of soils. 

(a)

(b)
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Figure 3.  (a) Model-2 Crossplots of neural network estimated 
hydraulic conductivity (cm/d) and measured hydraulic 
conductivity (cm/d) from UNSUDA database training by 
sandy soils; (b) Model-2 Crossplots of neural network 
estimated hydraulic conductivity (cm/d) and measured 
hydraulic conductivity (cm/d) from UNSUDA database 
training by all group of soils. 

 
 
Model-2: Input neurons are the percent finer for 

particle size in Φ scale (3.3, 2.3, 2, 1.6, 1.3, 1, 0.6, 0.3) 
of sand. The number of training data: 59, number of test 
data: 12. The output neuron is the saturated hydraulic 
conductivity of sand (Fig. 3, a and b). 

Model-3: Input neurons are the percent finer for 
particle size in Φ scale (3.3, 2.3, 2, 1.6, 1.3, 1, 0.6, 0.3) 
of sandy-loam. The number of training data: 29, number 
of test data: 10. The output neuron is the saturated 
hydraulic conductivity of sandy-loam (Fig. 4, a and b). 

Model-4: Input neurons are the percent finer for 
particle size in Φ scale (3.3, 2.3, 2, 1.6, 1.3, 1, 0.6, 0.3) 
of sandy-clay-loam, clay-loam, clay and loam (sand-
clay-loam family). The number of training data: 29, 
number of test data: 10. The output neuron is the 
saturated hydraulic conductivity of sandy-clay-loam, 
clay-loam, clay and loam (Fig. 5, a and b). 
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Figure 4.  (a) Model-3, Crossplots of neural network 
estimated hydraulic conductivity (cm/d) and measured 
hydraulic conductivity (cm/d) from UNSUDA database 
training by sandy loam soils; (b) Model-3, Crossplots of 
neural network estimated hydraulic conductivity (cm/d) and 
measured hydraulic conductivity (cm/d) from UNSUDA 
database training by all group of soils. 

 
 

of silty-clay-loam, silty-loam, silty-clay and silt (silt-
caly-loam family). The number of training data: 28, 
number of test data: 10. The output neuron is the 
saturated hydraulic conductivity of silty-clay-loam, 
silty-loam, silty-clay and silt (Fig. 6, a and b). 

Model-6: Input neurons are the percent finer for 
particle size in Φ scale (3.3, 2.3, 2, 1.6, 1.3, 1, 0.6, 0.3) 
of all soils in Model-1 to Model-5. The number of 
training data: 168, number of test data: 50. The output 
neuron is the saturated hydraulic conductivity of all 
soils in Model-1 to Model-5 (Fig. 1). 

The training and testing tolerances for the first five 
models were set at 5% and those of model-6 were 10%. 
The stop training criterion for model-1 to model-5 was 
95% and for model-6 this parameter was set at 85% of 
the training data. 
Finally for testing the application of artificial neural 
network technology for an aquifer, the predicted 

(b) 

(a) (a)

(b)
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hydraulic conductivity was checked against the 
measured values of pumping test data. For this purpose 
14 measured hydraulic conductivity values measured by 
pumping test analysis in an unconfined Aquifer in 
Zahedan (City of Zahedan in Iran) has been investigated 
by their grain size distribution curve obtained in the 
laboratory using the artificial neural network model. It 
has been found that reasonable estimate of this 
parameter can be obtained with the help of a network 
that trained using the only grain size distribution curve 
for relatively fine grained medium. A better estimate 
was obtained with a model that uses the special group of 
soil for training the network. Figure 7 shows the line 
plot of the measured values of hydraulic conductivity of 
an unconfined Aquifer in Zahedan measured by 
pumping test analysis and predicted value by their grain 
size distribution curve using the artificial neural 
network Mode-l, trained by loamy sand data. 
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Figure 5.  (a) Model-4 Crossplots of neural network estimated 
hydraulic conductivity (cm/d) and measured hydraulic 
conductivity (cm/d) from UNSUDA database training by 
sandy caly loam family; (b) Model-4, Crossplots of neural 
network estimated hydraulic conductivity (cm/d) and 
measured hydraulic conductivity (cm/d) from UNSUDA 
database training by all data. 
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Figure 6.  (a) Model-5, Crossplots of neural network 
estimated hydraulic conductivity (cm/d) and measured 
hydraulic conductivity (cm/d) from UNSUDA database 
training by silt-clay-loam family; (b) Model-5 Crossplots of 
neural network estimated hydraulic conductivity (cm/d) and 
measured hydraulic conductivity (cm/d) from UNSUDA 
database training by all data. 
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Figure 7.  Crossplots of neural network estimated hydraulic 
conductivity (cm/d) from grain size distribution curve using 
Model-1 and measured hydraulic conductivity (cm/d) for an 
unconfined aquifer in Zahedan. 
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Comparative Assessment of the Networks 
Developed for Individual Groups of Soils 

The comparisons of the neural network predicted 
values with the measured values of five soil group 
(including loamy-sand, sand, sandy-loam, sand-clay-
loam, silt-caly-loam) from UNSUDA database are 
shown in Figures 2-6 [6]. It is apparent from the figures 
that the prediction of neural network was improving 
through training the network with different group of 
soils (Models), and the majority of the predicted values 
were within the 95% confidence limits in all the cases. 
The Model-6 in which uses all types of soils, however 
was unable to predict very high (more than 1000 cm/d) 
and very low (less than 10 cm/d) values of hydraulic 
conductivity adequately. 

Conclusion 
The artificial neural network technique can be the 

best alternative method for estimating aquifer hydraulic 
conductivity from grain size distribution curve. 

The results of the present study suggest that 
reasonable and acceptable estimates of hydraulic 
conductivity are obtainable using this technique, 
provided enough training data covering the whole 
spectrum of soils type. Some trial-and-error runs need to 
be made to select an optimum combination of input 
neurons, number of hidden layers and the hidden 
neurons, and to decide when to stop training and to 
accept the network as trained. It was realized that the 
model that uses only one special type of porous media 
provides better predicted value. Results show that there 
is a reasonable estimate of hydraulic conductivity of 
Zahedan unconfined Aquifer from grain size 
distribution curve data using the artificial neural 
network Mode-l, trained by loamy sand data. 
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