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1. Introduction 

For a sequence of independent random variables 
{ , 1}nX n ≥  and a double array of constants 
{ , 1, 1}nia n i≥ ≥  (called weights), the almost sure (a.s.) 

limiting behavior of weighted sums 
1

ni i
i

a X
=
∑  was 

studied by many authors [1]. Sung [9] recently esta-
blished the following extension of Bai and Cheng [1]. 
 
Theorem S [9]: Let { , , 1}nX X n ≥  be a sequence of 
i.i.d. random variables satisfying ( ) 0E X =  and 

[exp( )]E h X γ
< ∞  for any 0( 0)h γ> > , (1) 

and let { , 1 , 1}nia i n n≤ ≤ ≥  be an array of constants 
satisfying 

, ,
1

limsup , /
n

n n ni
n i

A A A a nαα
α α α

→∞ =

= < ∞ =∑  (2) 

for some 1 2α< ≤ . Then for 0 1γ< ≤  and 

1/ 1/log ( )nb n nα γ=  

1
/ 0

n

ni i n
i

a X b
=

→∑    a.s., 

moreover, for 1γ >  and 1/ 1/(log( ))nb n nα γ δ+=  

1
/ 0

n

ni i n
i

a X b
=

→∑    a.s., 

where 1 1/ ( 1) /(1 )δ γ γ αγ α= − − − + − . 
But, in many stochastic models the assumption of 

independence among r.v.'s isn't plausible. In fact, 
increases in some r.v.'s are often related to decreases in 
other r.v.'s and the assumption of negative dependence 
is more appropriate than the independence assumption. 
The main aim of this paper is to try to extend and 
generalize Theorem S. 

2. Negative Dependence 

Definition 1.  The random variables 
1, , ( 2)nX X n ≥L  are said to be (mutually) negatively 
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dependent (henceforth ND) if both [6] 

1 1
1

( , , ) ( )
n

n n i i
i

P X x X x P X x
=

≤ ≤ ≤ ≤∏L  (3) 

and 

1 1
1

( , , ) ( )
n

n n i i
i

P X x X x P X x
=

≥ ≥ ≤ ≥∏L  (4) 

for all 1, , nx x R∈L . 
The random variables 1, , ( 2)nX X n ≥L  are said to 

be pairwise negatively dependent (PND) if ( , )i jX X  is 
ND for every i j≠ , , 1, ,i j n= L . Events { }nE  are 
said to be PND (or ND) if their indicator functions are. 

An infinite sequence is ND (or PND) if every finite 
subsequence is. 

We will need the following result [3,6,8]. 
 
Proposition 1.  Let { }nX  be a sequence of PND(or 
ND) r.v.'s. Then 

(i) ( , ) 0i jCov X X i j≤ ≠ , 
(ii) If { }nf  is a sequence of Borel functions all of 

which are monotone increasing (or all monotone 
decreasing) then { ( )}n nf X  is a sequence of PND (or 
ND) r.v.'s. 

(iii) The Borel-Cantelli lemma holds for PND (or 
ND) events. 

For other related negative-dependence concepts, we 
refer to Lehmann [7], and the monograph Joe [5]. 

Since the conception of PND sequences contains 
independent and negatively associated sequences, which 
have a lot of applications, e.g. in reliability theory, 
Percolation theory and multivariate statistical analysis, 
their limit properties have aroused wide interest. 
Bozorgnia et al. [2] and Taylor et al. [10] have studied 
the strong law of large numbers for weighted sums of 
negatively dependent r.v.'s. 
 
Definition 2.  The sequence { , 1}nX n ≥  of r.v.'s is said 
to be stochastically dominated in Cesaro sense by a r.v. 
Y providing that there exists such a positive constant K 
that for all 0λ ≥  and 1n ≥  we have 

1

1 ( ) ( )
n

i
i

P X KP Y
n

λ λ
=

≥ ≤ ≥∑ . (5) 

The sequence { , 1}nX n ≥  of r.v.'s is said to be 
stochastically bounded by r.v. X if there exists such a 
positive constant K that for all 0λ ≥  and 1n ≥  

( ) ( )nP X KP Xλ λ≥ ≤ ≥ . 

3. Results 

To prove our main result, we'll need the following 
lemma. That provides some conditions under which the 
weighted sum converges completely and determinate 
the rate of convergence. The concept of complete 
convergence introduced by Hsu and Robbins [4] is as 
follows. The sequence { , 1}nX n ≥  of random variables 
converges to zero completely (denoted lim 0n nX→∞ =  

completely), if 
1

( )n
n

P X ε
∞

=

> < ∞∑  for every 0ε > . 

In this section { }nia  stands for an array of real 
numbers, { ( )}l n  stands for a non-decreasing sequence 
of integer numbers such that ( )l n →∞ , also 

, , , ,Kγ δ β α  and h stand for positive constants and 
finally K1 stands for a generic constant but are not 
necessarily the same at each occurrence. 
 
Lemma 1.  Let { , 1}nX n ≥  be a sequence of r.v.'s that 
are stochastically dominated in Cesaro sense by r.v. X 
that satisfies (1). Let { , 1 ( ), 1}niX i l n n≤ ≤ ≥  be an 
array of rowwise PND r.v.'s with ( ) 0niE X =  for 
1 ( )i l n≤ ≤  and 1n ≥  that satisfies the following 
conditions: 

(i) / logni ni ia X C X nβ
≤  a.s., for some 0 β γ< ≤  

and some constant 0C > . 

(ii) 
( )

2 2

1
/ log

l n

ni ni n i
i

X a X nδν
=

≤∑  a.s., for some 0δ >  

and some sequence { }nν  of constants such that 
( ) 0n l nν → . 

Then 

( )

1 1
( )

l n

ni ni
n i

n P a Xα ε
∞

= =

> < ∞∑ ∑    0, 1ε α∀ > < , 

thus 
( )

1

l n

ni ni
i

a X
=
∑  converges to zero completely and, 

hence, a.s. 
 
Proof.  Let 

n ni niT a X+ = ∑  where sum is over i's such that 0nia ≥  

n ni niT a X− = ∑  where sum is over i's such that 0nia <  

then 
( )

1
( 2 ) ( ) ( )

l n

ni ni n n
i

P a X P T P Tε ε ε+ −

=

> ≤ > + >∑  
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( ) ( )n nP T P Tε ε+ −+ < − + < − . 

It is clear that 
( )

1

1 ( ) ( )i
l n

h X h X

i
E e E e

n

γ γ

=

≤∑ . From the 

inequality 211
2

xxe x x e≤ + +  for all x R∈ , we have 

2 2 21[ ] 1 [ ]
2

ni nini ni t a Xta X
ni niE e t a E X e≤ +  

for any 0t > . Let 0ε >  be given. By putting 
2log /t n ε= , from condition (i) and condition (ii) we 

obtain 
2

2 2
2

1 4log 2log[ ] 1 [ exp( )]
2

ni nita X
ni ni ni ni

n nE e a E X a X
εε

≤ +  

 
2

( )2
2

1

2 log 21 [ exp( )]ni
n i il n

nj
j

an E X C X
a

δ βν
ε ε

=

≤ +

∑
. 

Since ( )C xx O e
βδ

≤  for all x R∈ , then the RHS 

11 (1) log [exp( )]
2 n iO nE h X βν≤ + , 

where 2h Cε
ε
+

= . Now using inequality 1xe x≥ +  

for all x R∈ , we have 

1exp( (1) log ( ))
2

ih X
nO nE e

β

ν≤ . 

Therefore 
( )

1
( 2 )

l n

ni ni
i

P a X ε
=

> ≤∑ 2logexp( )n E
ε

−  

             
0

1[exp( (1) log ( ))
2

i

ni

h X
n a

O n E e
β

ν
≥∑  

 
0

1exp( (1) log ( ))]
2

i

ni

h X
n a

O n E e
β

ν
<

+ ∑ . 

Since 2 x y x ye e e+ ≥ +  for 0x ≥ , 0y ≥ , then RHS 

2log2exp( )n ε
ε

−
≤

( )

1

1[exp( (1) log ( ))]
2

i
l n

h X
n

i

O n E e
β

ν
=
∑ , 

and by stochastically domination in Cesaro sense 
condition we have 

12exp( 2log (1) log ( ) ( ))
2

h X
nn O nl n E e

β

ν≤ − +  

and for n  sufficiently large 
2 1/2exp( 2log 1/ log ) 2n n n ττ − +≤ − + =  

where 1/(1 )τ α> − . Then 

( )
2 1/

1 1 1
( 2 )

l n

ni ni
n i n

n P a X K nα τ αε
∞ ∞

− + +

= = =

> ≤ < ∞∑ ∑ ∑ . (6) 

By replacing niX  by niX−  from the above 
statement, we obtain 

( )
2 1/

1 1 1
( 2 )

l n

ni ni
n i n

n P a X K nα τ αε
∞ ∞

− + +

= = =

< − ≤ < ∞∑ ∑ ∑ . (7) 

Hence the result follows by (6) and (7). 
Lemma 1 holds for stochastically bounded sequences 

if in condition (ii) we have only 0nν → . 
The following lemma shows that if condition (1) is 

replaced by the weaker condition 

[exp( )]E h X γ
< ∞    for some 0( 0)h γ> > , (8) 

then condition (i) can be replaced by stronger condition 
(iii) / logni ni n ia X u X nβ

≤  a.s., for some 
0 β γ< ≤  and some constant { }nu  of constants such 
that 0nu → . 
 
Lemma 2.  Let { , 1}nX n ≥ , { , 1 ( ), 1}niX i l n n≤ ≤ ≥  
and { }nia  be as in Lemma 1 expect that (1) and (i) are 
replaced by (8) and (iii), respectively. Then 

( )

1 1
( )

l n

ni ni
n i

n P a Xα ε
∞

= =

> < ∞∑ ∑    0, 1ε α∀ > < . 

Thus 
( )

1

l n

ni ni
i

a X
=
∑  converges to zero completely and, 

hence, a.s. 
The proof of Lemma 2 is analogous to the proof of 

Lemma 1 and hence omitted. 
 
Theorem 1.  Let { , 1}nX n ≥  be a sequence of PND 
r.v.'s which ( ) 0nE X = , and are stochastically bounded 
by r.v. X that satisfying in (1). Let { }nia  be an array of 
constants satisfying (2) for some 1 2α< ≤ . Then for 
0 1γ< ≤  and 1/ 1/log ( )nb n nα γ=  

1
/ 0

n

ni i n
i

a X b
=

→∑    a.s., 

moreover, for 1γ >  and 1/ 1/(log( ))nb n nα γ δ+=  
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1
/ 0

n

ni i n
i

a X b
=

→∑    a.s., 

where 1 1/ ( 1) /(1 )δ γ γ αγ α= − − − + − . 
 
Proof.  We first observe that 

1
( / ) ( / / 2)

n

ni i n n n
i

P a X b P T bε ε+

=

> ≤ >∑  

 ( / / 2)n nP T b ε−+ > , 

since in the first sentence { }ni ia X  and then in the 
second sentence { }ni ia X  are two disjoint sets of PND 
r.v.'s, by the Markov inequality we have 

2 2
2 2 : 0 : 0

4 ( ( ( )) ( ( )) )
ni ni

ni i ni ii a i a
n

E a X E a X
bε > <

≤ +∑ ∑  

2 2 21 1
2 2

1 1
( )

n n

ni i ni
i in n

K K
E a X a

b b= =

≤ ≤∑ ∑  

2 /
2 / 2 2 / 2

1 1 ,2
1

1( ) / 0
n

ni n n
in

nK a K A n b
nb

α α α α
α

=

≤ = →∑  

as n →∞ . It follows that 

1
/ 0

n

ni i n
i

a X b
=

→∑    in probability. 

We proceed with two cases. 
Case 1: 0 1γ< ≤ . 
Define 1/ 1/( log ) log (ni i i iX X I X n nI Xγ γ′ = ≤ − ≤  

1/ 1/ 1/log ) log ( log )in nI X nγ γ γ− + >  and ni i niX X X′′ ′= −  
for 1 ( )i l n≤ ≤  and 1n ≥ . It is obvious that { }niX ′  and 
{ }niX ′′  are stochastically bounded to X. Note that 

( )XE e
γ

< ∞  implies that 1/

1
( log )n

n
P X nγ

∞

=

> < ∞∑ . 

Hence, by the Borel-Cantelli lemma, 
1

n

ni
i

X
=

′′∑  is 

bounded a.s. It follows that 

1 1
1

1 1

max
n n

n ni ni n i n ni ni
i i

b a X b a X− −
≤ ≤

= =

′′ ′′≤∑ ∑  

                       1/
,

1

/ log ( ) 0
n

n ni
i

A X nγ
α

=

′′≤ →∑  (9) 

a.s. as n →∞ . 
To complete the proof of Case 1, we will apply 

Lemma 1 to r.v. niX ′  and weight 1
n nib a− . We first note 

that 

1 1 (1 ) /(log )n ni ni n ni ib a X b a n X γγ γ− − −′ ≤  

                  1 1/ (1 ) /
, (log )n n ib A n n X γα γ γ

α
− −≤  

                  , / log( )n iA X nγ
α=  

and 

2 2 2 2 2 2

1 1

n n

n ni ni i n ni
i i

b X a X b a− −

= =

′ ≤∑ ∑  

                      2 2 2/
, / log ( )n iA X nγ

α≤ . 

Hence conditions (i) and (ii) of  Lemma 1 are 
satisfied,  and hence 

1
/ 0

n

ni ni n
i

a X b
=

′ →∑    a.s., (10) 

The result of Case 1 is proved by (9) and (10). 
Case 2: 1γ > . 

Define for each 1 ( )i l n≤ ≤ , 1n ≥  

1 1 11 ( (log ) ) (log ) ( (log ) )ni i i iX X I X n n I X nδ δ δ= ≤ + >  

 1 1(log ) ( (log ) )in I X nδ δ− < −  

1 12 1/( (log ) ) ((log ) (log ) )ni i iX X n I n X nδ δ γ= − < ≤ +  

 11/ 1/((log ) (log ) ) ( ((log ) )in n I X nδγ γ− >  

3 1/ 1/( (log ) ) ( (log ) )ni i iX X n I X nγ γ= − >  

1 14 1/( (log ) ) ( (log ) (log ) )ni i iX X n I n X nδ δγ= + − ≤ <− +  

 1 1/ 1/((log ) (log ) ) ( (log ) )in n I X nδ γ γ− < −  

5 1/ 1/( (log ) ) ( (log ) )ni i iX X n I X nγ γ= + < − , 

where 1 / 1 1/(1 )δ αδ α γ α αγ α= + − + = + − . Define 
21/( /(log ) )ni ni nia a I a n n δα′ = ≤  and ni ni nia a a′′ ′= −  for 

1 ( )i l n≤ ≤  and 1n ≥ , where 2 1 1/δ γ δ= − − . We 
rewrite 

1 1 1 1

1 1
[

n n

n ni i n ni ni ni ni
i i

b a X b a X a X− −

= =

′ ′′= +∑ ∑  

 2 3 4 5 ]ni ni ni ni ni ni ni nia X a X a X a X+ + + +  

                    : n n n n n nA B C D E F= + + + + + . 

Since , 1, ,5j
ni iX X j≤ = L , then for every 

1, ,5j = L ,  { }j
niX  are stochastically bounded to X. For 
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nA , we will apply Lemma 1 to the r.v. 1
niX  and weight 

1
n nib a− ′ . Observe that 

1 1 1
n ni ni n ni ib a X b a X− −′ ′≤  

                  
2

1/ 1
(log ) logi i

n

n X X
b n n

α

δ≤ =  

and so condition (i) is satisfied. Moreover, we have 

2

(2 ) /

1 2 2 2 1 21
(2 )2

1
( ) ( )

(log )

n

nin
i

ni n ni ni
i n

n a
X b a X

b n

αα α

δ α

−

− =
−

=

′ ≤
∑

∑  

                           
2

2 /
, 2
(2 )2 (log )
n

i
n

n A
X

b n

α α
α
δ α−≤  

                           
2

, 2
(2 ) 2 2 /(log )

n
i

A
X

n

α
α

δ α δ γ− + +
≤ . 

Since 
22 / 2 (2 ) (2 ) /(1 ) 1γ δ δ α αγ α αγ α+ + − = + − + − > , 

condition (ii) is satisfied. Hence 0nA →  a.s. by 
Lemma 1. 

For nB , we obtain 

11

1

(log )
n

n n ni
i

B b n aδ−

=

′′≤ ∑  

        
1 2 ( 1)

1
( 1) /

(log )
n

ni
i

n

n a

b n

αδ δ α

α α

+ −

=
−≤
∑

 

        ,nA α
α=  

and so lim supn nB A α
α→∞ ≤ . 

For nC , we will again apply Lemma 1 to the random 
variable 2

niX  and weight 1
n nib a− . Noting that 

1

1 2
( 1)(log )

ni
n ni ni i

n

a
b a X X

b n
γ

δ γ
−

−≤  

                  
1

,
( 1) 1/(log )

n
i

A
X

n
γα

δ γ δ γ− + +≤  

                  ,

log
n

i

A
X

n
γα=  

and 

1

2

2 2 2 2 21
2 ( 1)2

1
( ) ( )

(log )

n

nin
i

ni n ni i
i n

a
X b a X

b n
γ

δ γ
− =

−
=

≤
∑

∑  

                           
1

2 2 /
, 2

2 ( 1)2 ( )
(log )

n
i

n

A n
X

b n

α
α γ

δ γ −≤  

                           
1

2
, 2

2 / 2 2 ( 1) ( )
(log )

n
i

A
X

n
α γ
γ δ δ γ+ + −=  

                           
2

, 2
2 ( )

log
n

i

A
X

n
α γ= , 

we have 0 . .nC a s→  by Lemma 1. 
It can be shown that 0 . .nE a s→  by the same 

method as in nC  and 0 . .nD a s→   and 0 . .nF a s→   by 
the same method as in Case 1. 

Accordingly, we obtain that 
1

1
limsup

n

n n ni i
i

b a X A α
α

−
→∞

=

≤∑  a.s. By replacing iX  by 

iXϖ , ϖ  as an arbitrary positive number, we have 

1

1
limsup . .

n

n n ni i
i

Ab a X a s
α
α

ϖ
−

→∞
=

≤∑  

By letting ϖ →∞ , the proof of Case 2 is completed. 
ND random variables will lose the property of 

negative dependence after we truncate them by usual 
indicators. Only monotone functions preserve the 
property of negative dependence, as it mentioned in 
Proposition 1 (ii). This is the reason why the authors 
need to use monotone truncation, that is, a sum of 
indicators. 
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