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Abstract 
We study entanglement and squeezing of a cluster of spin systems under the 

influence of the two-axis countertwisting Hamiltonian. The squeezing parameters 
given by Wineland et al and also by Kitagawa et al. are chosen as the criteria of 
spin squeezing. The criterion of pairwise entanglement is chosen to be the 
concurrence and that of the bipartite entanglement the linear entropy. We also 
define a new squeezing parameter η, which plays a direct role in the investigation 
of the relationship between squeezing and entanglement. We observe that if the 
system is squeezed according to the Wineland’s criterion, it is squeezed according 
to the Kitagawa’s also, but the reverse is not always true. Moreover, if the system 
is squeezed according to Kitagawa’s criterion, it is pairwise entangled 
simultaneously and vice versa. It is also observed that the entropy is a linear 
function of the parameter η2. 

 
Keywords: Spin squeezing; Entanglement; Two-axis countertwisting Hamiltonian 

 
 

 
* Corresponding author, Tel.: +98(611)3331040, Fax: +98(611)3331040, E-mail: mojtaba_jafarpour@hotmail.com 

Introduction 

Entanglement [1-11] is closely related to squeezing 
[12-22] and being considered as an information 
resource, it is quite relevant to the subject of quantum 
information and quantum computation [23-26]. 
Moreover, squeezing has also important applications in 
quantum measurements and precision spectroscopy  
[27-31]. 

In this work [32], we consider a cluster of spin 
system consisting of several qubits, which are initially 
in a coherent state and study their time evolution via the 
well known two-axis countertwisting Hamiltonian [12] 

( )2 2ˆ ˆ
2

H S S
i
χ

+ −= −  (1) 

To study the squeezing properties of the system, we 
use the spin squeezing parameter 

2
min2 2( )n

K

S
S

ξ ⊥
Δ

= , (2) 

introduced by Kitagawa et al and also the spin 
squeezing parameter 

2
2 2

min
ˆ2 ( )W nS S Sξ

⊥
= Δ , (3) 

introduced by Wineland et al [27]. Here n̂⊥  represents a 
direction perpendicular to the mean spin direction 

ˆ ˆ ˆn̂ S S S= ⋅ . We also consider linear entropy 
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21 ( )L iE Tr ρ= − , (4) 

as a measure of bipartite entanglement (the 
entanglement between one spin and all the others)[11],

 where iρ  is the reduced density matrix for the i th 
particle; and the concurrence

 
1 2 3 4max{0, }C λ λ λ λ= − − − , (5) 

as the measure of pairwise entanglement ( the 
entanglement of a pair of spins)[1,2]. Here, iλ  are the 
eigenvalues of the 4 by 4 matrix 

( ) ( )ij ij iy jy ij iy jyρ σ σ ρ σ σ∗Ρ = ⊗ ⊗ , (6) 

where, ijρ  is the reduced density matrix element and 

ijρ∗  is its complex conjugate.  
We shall present our calculations for the prototype 4-

qubit system in detail. To demonstrate our procedure; 
however, the method may be applied to study the 
entanglement and squeezing of N-qubit systems as well. 
We shall display our results for a 9-qubit system as an 
example. 

We organize the rest of this paper as follows. In 
section 2, the initial spin coherent state is introduced 
and its uncertainty aspects are discussed. Then, its time 
evolution via Hamiltonian (1) is considered and time 
dependent spin operators are obtained. Time depen-
dence of the squeezing parameters (2) and (3) are also 
discussed in section 2. In section 3, entanglement 
parameters, their time dependence and their relationship 
to the squeezing parameters, are considered. Finally, 
section 4 is devoted to discussion and conclusions. 

Spin Squeezing 

A general spin S  coherent state, is given by 

( ) ( )
1/22

2

0

2
, 1 ,

SS mi
z

m

S
e S S m

m
ϕθ ϕ γ γ

−

=

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
∑ , (7a) 

tan( )
2
θ γ= , (7b) 

where, θ  and ϕ  are the polar and the azimuthal angle, 
respectively and ,

z
S S m−  are eigenstates of 2S  and 

zS [33]. This may be considered as an ensemble of 
2N S=  qubits ( N  one-half spins) with no interaction 

between them for the moment. Thus, the collective spin 
operators in the direction n̂ , may be given by 

,
1

1
2

N

n i n
i

S σ
=

= ∑ . (8) 

Where, , ˆˆ .i n i nσ σ=  is the Pauli matrix in the n̂  
direction for the i th spin. We consider our prototype 
four qubit coherent state along the z-direction, as 
follows 

0, , 2, 2S Sθ ϕ= = = . (9) 

We note that 

ˆ ˆ2, 2 2,2 2, 2 2,2 0x yS S= = , (10) 

ˆ ˆ ˆ2, 2 2,2 2z zS S S= = = , (11) 

2 2( ) ( ) 1x yS SΔ = Δ = ; (12) 

meaning that the average spin rests along the z direction 
and all the spins are upward at 0t = . Moreover the 
uncertainty relation 

( ) ( )
222 1 ˆ

4x y zS S SΔ Δ ≥ , (13) 

with the equality sign is satisfied here. 
We now study the time evolution of this 4-qubit 

system via Hamiltonian (1). The nonzero matrix 
elements of H  are given by 

3,1 5,3( ) ( ) 6H H i χ= = , 

1,3 3,5( ) ( ) 6H H i χ= = − , 

4,2 2,4( ) ( ) 3H H i χ= − = . (14) 

Thus, our time dependent ket state is found to be 

(1 cos(2 )) / 2
0

( ) 2, 2 (sin(2 )) / 2
0

(1 cos(2 )) / 2

iHt

T

T e T

T

ψ −

+⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟= =
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠

, (15) 

where, the scaled time, 3T tχ=  has been defined. 
Using the above dynamically generated state we find 

ˆ ˆ( ) ( )) ( ) ( ) 0x yT S T T S Tψ ψ ψ ψ= = , (16) 

implying that the dynamic evolution has not changed 
the average direction of spin and it still stands along the 
z-axis. We therefore have 
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ˆ( ) ( ) 2 cos(2 )T S T Tψ ψ = . (17) 

It is now worthwhile to look at the uncertainty 
relation at time T , we find 

2 3 1( ) cos(4 ) 3 sin(2 )
2 2xS T TΔ = − + , (18) 

2 3 1( ) cos(4 ) 3 sin(2 )
2 2yS T TΔ = − − , (19) 

2 2( ) ( ) [7 cos(8 )] / 8x yS S TΔ Δ = + , (20) 

and 
2

21 ˆ [cos(2 )]
4 zS T= . (21) 

Comparing (20) and (21) with (12) we observe a 
redistribution of uncertainties in different directions in 

this situation. For example, assuming 
6

T π
= , we find 

2( ) 3.62xSΔ = ,   2( ) 0.26ySΔ = , 

2 2( ) ( ) 0.95x yS SΔ Δ = ,  
21 ˆ 0.06

4 zS = ; (22) 

meaning that uncertainty along the x-axis has increased 
above the quantum limit, while it has decreased below 
that limit along the y-axis. The inequality sign in (13) is 
also satisfied. In fact, we are dealing with a squeezed 
state at this time, and those are exactly the 
characteristics that we expect for such states. 

To find the best squeezing direction, we rotate the 
coordinate system in the x y−  plane by angle δ , but 
keep the z-axis fixed. Obviously, the uncertainties along 
the new coordinates are functions of δ . Let’s define the 
direction ˆ (cos ,sin ,0)n δ δ⊥ =  in the x y−  plain. We 
may write 

cos sinn x yS S Sδ δ
⊥
= + . (23) 

Therefore we find 

2 3 1( ) cos(4 ) 3 sin(2 )cos(2 )
2 2nS T T δ

⊥
Δ = − + . (24) 

Minimizing (24) with respect to δ , we obtain 

2
min

3 1( ) cos(4 ) 3 sin(2 )
2 2nS T T

⊥
Δ = − − . (25) 

This result shows that the minimum uncertainty 
achievable along a direction in the x y−  plain is a 
periodic function of time. This implies that although the 

mean spin direction remains along the z-direction, but 
the distribution of spin directions changes in time. To 
show this point more vividly, we have illustrated the 
quasi-probability distributions 

2
, 2,2Q θ φ=  and 

2
, ( )Q Tθ φ ψ=  along with their contour plots in 

Figure 1. The elliptic contours in Figure (1a), in contrast 
to the circular ones in Figure (1b), represent the 
redistribution of probabilities and uncertainties clearly. 

Now, using (2), (3) and (25), we express the 
squeezing parameters for the n̂⊥  direction as follows. 

2 3 1 cos(4 ) 3 sin(2 )
2 2K T Tξ = − − , (26) 

2
2

3 1 cos(4 ) 3 sin(2 )
2 2 .

(cos(2 ))W

T T

T
ξ

− −
=  (27) 

We have plotted these parameters as a function of T  
in Figure 3. We note that the system becomes squeezed, 
according to both criteria, at the alternate time intervals, 
due to the dynamics provided by the Hamiltonian (1). 
We note that 2 2

W Kξ ξ≥ ; therefore, for the values of 
2 1Wξ < , that the system is squeezed according to Wine-

land’s criterion, it is squeezed according to Kitagawa’s 
also. The reverse is not of course always true. 
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Figure 1.  Quasi-probability distribution and its contour plot 
for N=4 at a) T=0, b) T=0.1776. 
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Spin Entanglement 

First we consider the bipartite entanglement of the 
system. We are dealing with identical entities, therefore 
due to exchange symmetry the reduced matrix 2

iρ  is the 
same for all the entities. Moreover, the reduced density 
matrix is just the one-qubit density matrix and we have 

11
2 1

z x y

i

x y z

i

i

σ σ σ
ρ

σ σ σ

⎛ ⎞+ −
⎜ ⎟=
⎜ ⎟+ −⎝ ⎠

, (28) 

where at the scaled time T  we have 

cos(2 3 )z Tσ = , 0yσ = ,  0xσ = . (29) 

Using (4), (28) and (29) we finally obtain 
2 21/ 2 / 2 (sin(2 )) / 2L zE Tσ= − = . (30) 

Now, defining the scaled entropy 2S LE E=  [11] and 
eliminating time between equations (30), (26) and (27) 
we find 

2 22 (1 ) (sin(2 ))S LE E Tη= = − = . (31) 

Where, 2η  which may be called squeezing ratio, has 
been defined by 

2
2

2 1K

W

ξ
η

ξ
= ≤ . (32) 

This is an interesting result; the scaled entropy which 
is the criterion of bipartite entanglement is a linear 
function of the squeezing ratio 2η  and vice versa. The 
squeezing ratio satisfies the inequalities 20 1η≤ ≤ ; 
thus, the scaled entropy changes in the range 
1 0SE≥ ≥ . Moreover, smaller values of 2η  correspond 
to deeper bipartite entanglement. We have plotted 
scaled entropy as a function of time in Figure 3. We like 
to emphasize that SE  is not a simple or a monotonic 
function of either squeezing parameters 2

Kξ  and 2
Wξ ; 

thus, we can not relate squeezing and bipartite 
phenomena in a simple manner and that was the reason 
for introducing the squeezing ratio, in the first place. 

We now embark upon studying the pairwise 
entanglement of the system. First we calculate the 
reduced initial density matrix ijρ  at 0t = . In fact, due 
to the exchange symmetry, it is independent of i  and 
j ; thus we drop the indices and call it (0)ρ  for 

simplicity. It has only the nonzero element 11(0) 1ρ = . 
The nonzero matrix elements of the dynamically 

generated time dependent density matrix are given by 
[34] 

2
11 (cos( )) (2 cos(2 )) / 3T Tρ = + , 

2
44 (sin( )) (2 cos(2 )) / 3T Tρ = − , 

14 41 (sin(2 )) / 2 3Tρ ρ= = , 

2
22 23 32 33 (sin(2 )) / 6Tρ ρ ρ ρ= = = = . (33) 

We also calculate the nonzero matrix elements of   
the operator ( )iy jyσ σ⊗ ; we find 

23 32( ) ( ) 1y y y yσ σ σ σ⊗ = ⊗ = , 

14 41( ) ( ) 1y y y yσ σ σ σ⊗ = ⊗ = − . (34) 

Using (33) and (34) in (6), we find the nonzero 
matrix elements of the operator ijP , which we simply 
call P , as follows 

2
11 [13 cos(4 )][sin(2 )] / 72P T T= − , 

3
14 2[cos( )] [sin( )][2 cos(2 )] / 3 3P T T T= + , 

3
41 2[cos( )][sin( )] [2 cos(2 )] / 3 3P T T T= − , 

4
22 23 32 33 [sin(2 )] /18P P P P T= = = = . (35) 

The square root of the eigenvalues of this matrix in 
the descending order are found to be 

2
1 sin(2 ) [1/ 2 3 4 (cos(2 )) / 6 ]T Tλ = + − , 

2
2 sin(2 ) [( 4 (cos(2 )) / 6) 1/ 2 3]T Tλ = − − , 

2
3 (sin(2 )) / 3Tλ = , 

4 0λ = . (36) 

Finally, application of (36) in (5), gives us the scaled 
concurrence 3SC C=  as a function of the scaled time 
T  as follows 

23 sin(2 ) (sin(2 ))SC T T= − . (37) 

Eliminating time between (37) and (26) we find the 
following linear relation between SC  and 2

Kξ  

23 [1 ]S KC C ξ= = − . (38) 

We have plotted the function SC  in Figure 3. We 
observe that, if 2 1Kξ =  we have 0SC = ; that is if the 
system is not squeezed it is not pairwise entangled 
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either. However, if 2 1Kξ < , the system is squeezed 
according to Kitagawa’s criterion, then we have 0SC >  
and the system is also pairwise entangled simul-
taneously and vice versa. 

We may also write 

2 1
1

S
W

S

C
E

ξ
−

=
−

. (39) 

We have plotted the three functions SC , SE , 2
Kξ  and 

2
Wξ  in Figure 3. For 2 1Wξ =  the system is not squeezed 

and 0S SC E= = , that is we do not have entanglement 
either. But, it is squeezed for 2 1Wξ < , which requires 

S SC E> ; this may be considered as a criterion of the 
existence of squeezing in this system and vice versa. 
Similar arguments may be applied to N-qubit systems; 
we have also plotted the squeezing parameters 2

Wξ  and 
2

Kξ  and the entanglement parameters SC  and SE , for 
a 9-qubit system in Figure 4 as an example. 

We now eliminate time between (31) and (37) to 
obtain the following relation between SC  and SE  
which is only applicable to our 4-qubit system 

3S S SC E E= − . (40) 

We have plotted SC  as a function of SE  in Figure 2. 
Barring one maximum point at 0.750SE = , it is a 
monotonic function of SE ; increases for the range 

(0,0.75)SE = , while decreases for the range 
(0.75,1)SE = . 

Results and Discussion 

We considered multi-qubit cluster systems, initially 
in coherent states, and studied their time evolution via 
the two-axis countertwisting Hamiltonian. Our pro-
cedure was demonstrated for our prototype 4-qubit 
system in detail. It was observed that the average spin 
direction remains along the initial one, but the quasi-
probability distribution for spin direction becomes 
asymmetrical about the z-axis, in contrast to the initial 
symmetrical one. We showed that the parameters for K-
squeezing (defined by Kitagawa et al) and W-squeezing 
(defined by Wineland et al) are periodic functions of 
time. Barring some separate instances of time, the 
system was found to be always K-squeezed, but only 
W-squeezed in alternate time intervals. It was also noted 
that if the system is W-squeezed it will be K-squeezed 
also, but the reverse is not necessarily true. 

We observed that the scaled entropy, which is the 
criterion of bipartite entanglement, is a linear function 
of the squeezing ratio 2η  and vice versa. 2η  Satisfies 
the inequalities 20 1η≤ ≤ ; thus, the scaled entropy 
changes in the range 1 0SE≥ ≥ . Moreover, smaller va-
lues of 2η  correspond to deeper bipartite entanglement. 

We also noted that pairwise entanglement is a linear 
function of K-squeezing parameter and the system is K-
squeezed if it is pairwise entangled and vice versa. 
Finally, we observed that for 2 1Wξ <  (W-squeezing), 
the inequality S SC E>  is satisfied and vice versa; thus, 
the latter inequality may be considered as the criterion 
of the existence of W-squeezing and vice versa. 
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Figure 2.  CS versus ES for N=4. 
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Figure 3.  Plots of ξW
 2 (dotted line), ξK

 2 (dashed line), CS 
(solid line) and ES (dashed-dotted line) versus time for N=4. 
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Figure 4.  Plots of ξW
 2 (dotted line), ξK

 2 (dashed line), CS 
(solid line) and ES (dashed-dotted line) versus time for N=9. 
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