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Abstract 
The statistical analysis of spatial data is usually done under Gaussian 

assumption for the underlying random field model. When this assumption is not 
satisfied, block bootstrap methods can be used to analyze spatial data. One of the 
crucial problems in this setting is specifying the block sizes. In this paper, we 
present asymptotic optimal block size for separate block bootstrap to estimate the 
variance of sample mean for spatial lattice data, using minimization of asymptotic 
mean square error of the estimator. Further, an empirical method has been 
proposed to determine the optimal block size. Also the optimality of the empirical 
estimate of block size has been considered numerically in a simulation study. 
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Introduction 

Statistical methods are frequently based on 
independent observations; however, we are often faced 
with many cases in which the data depend on each 
other. Spatial data are observations where their 
dependency is derived from their location in the space 
under study. This dependency is described as a function 
of the distances between the locations of observations. 
Inferences of spatial data are often based on the 
assumption of a Gaussian random field, although it may 
be inappropriate in many practical applications. 
Specifying correlation structure in spatial statistics may 
face some problems from the estimation point of view. 
In such a case, bootstrap method can be used in a 
nonparametric inference for data. 

Efron [5] proposed the bootstrap method for 
independent data in which one can estimate the bias, 

variance and the distribution of the estimators using 
resampling data. This method is not applicable to 
dependent data such as time series and spatial data (see 
e.g. Singh [17]). In such cases, block bootstrap methods 
can be used. Hall [6] proposed two methods based on 
making observations and locations as blocks for the 
special case of mosaic data. Buhlmann and Kunsch [2], 
Zhu and Lahiri [18] and Lahiri [12] also proposed the 
moving block bootstrap (MBB) method for spatial data 
analysis. In this method, resampling from observations 
is performed in moving blocks, however, the 
observations located at the edges of the study region are 
less likely to be present in blocks leading to bias in the 
estimation. To overcome this difficulty, Iranpanah and 
Mohammadzadeh [8,9] proposed separate block 
bootstrap (SBB) method to estimate precision measures 
of the estimators for a random field mean and a kriging 
spatial predictor. Iranpanah et al. [10] used this method 

Archive of SID

www.SID.ir

http://www.nitropdf.com/
http://www.sid.ir


Vol. 20  No. 4  Autumn 2009 Iranpanah et al. J. Sci. I. R. Iran 

356 

to analysis the finite strain data across a thrust sheet. In 
SBB method, first the locations are partitioned and then 
bootstrap algorithm is performed by resampling the 
separate blocks. Precision of the estimators in this 
bootstrap method is sensitive to block size selection. 
Specifying optimum block size for time series block 
bootstrap method has been studied by Kunsch [11], Hall 
et al. [7] and Lahiri [12]. Moreover, Nordman and 
Lahiri [15] proposed optimal block size for spatial 
subsampling. Nordman et al. [16] drive expressions for 
optimal block size for variance estimation by a spatial 
MBB method. 

In this paper, we specify an optimum block size for 
SBB method in order to estimate asymptotically the 
variance of sample mean for spatial lattice data. Next, 
the asymptotic bias and variance of the sampled mean 
variance estimator are specified using separate block 
bootstrap method. Then, the optimum block size is 
obtained by minimizing the asymptotic mean square 
error of the estimator. Finally, the theoretical and 
asymptotic results are evaluated by a simulation study. 
In this case, the required preliminaries are presented in 
Section 3. Then we propose the separate block bootstrap 
method in Section 2. Section 4 consists of asymptotic 
determination of optimum block size and an empirical 
estimate for it. In Section 5, we discuss the optimum 
block size and its empirical estimation using Monte 
Carlo simulation of the spatial data. The last section will 
end with discussion and results. 

Separate Block Bootstrap 

Suppose the observations of a stationary random 
field; ( ){ }: dZ ∈]s s  which is weakly dependent on the 

locations { }1, ,
nn N≡ …S s s  inside the sampling region; 

d
nD ⊂ \  are presented as data set; 

( ){ }: d
n n nZ D= ∈ = ∩]Z s s S . To consider asympto-

tic properties of bootstrap estimator, we assume that the 
sampling region nD  is unbounded as n →∞ . This 
structure was used to study the asymptotic properties of 
spatial data as an increasing domain (Cressie [3]). Now 
assume 0D  is a Borel subset of ( ]1 2,1 2 d− , consisting 
of an open neighborhood of the origin, so that for each 
positive sequence of real numbers na →∞ , the number 

of cubes of the scaled lattice formed from 0 0
cD D∩ ; i.e. 

d
na ] , is of order of ( )( )11 d

nO a
−− , where 0D  and 0

cD  

are closures of 0D  and 0
cD , respectively. Then, assume 

that { } 1n n
λ

≥
 is a sequence of real numbers not less than 

1, such that nλ →∞  as n →∞ . Now we consider the 
sampling region as  

0
d

n nD Dλ=  (1) 

which is defined by inflating the prototype set 0D  by 
the scaling factor nλ . In this case, volume of the 
sampling region is given by 0

d
n nD Dλ=  which is 

related to the sample volume by d
n nN D= ∩] , where 

A  is the cardinality of a countable set; dA ⊂ ]  or the 

lebesque measure of an uncountable set; dA ⊂ \ . The 
structure of the above mentioned sampling region is 
similar to the MBB method (Lahiri [13]) and spatial 
subsampling (Nordman and Lahiri [15]). If ( )n̂ n ntθ = Z  
is an estimator of the parameter θ  based on nZ  
observations, then the goal is to estimate the variance of 
the normalized statistic; ˆ

n nN θ  i.e. ( )2 ˆVarn n nNσ θ=  

using SBB method. 
To conduct the SBB method, the sampling region nD  

must be partitioned into cubic blocks. Assume that 
{ } 1n n
β

≥
 is a sequence of positive integers so that 

( )1 1 1n n n oβ β λ− −+ = , as n →∞ . This means that nβ , 
called as block size, tends to infinity more slowly than 
the scaling factor nλ  in (1). Assume that 

( ){ }:d
n n nDβ= ∈ + ⊂]k kK U  is a set of separate, 

equal and complete d-dimensional cubic blocks indexed 
in the form of ( )nβ +k U  which are in the sampling 

region nD , where ( ]0,1 d
U =  is the unit cube in d\ . 

Assume that ( ) ( ) ( ){ }1 , ,
nn n ND Z s Z s= …Z  is a 

complete sample and ( )( )n nDZ k  is the subsample 

inside the k-th block, i.e. 

( ) ( ) , .k k kn n n nD Dβ≡ + ∈U K∩  (2) 

Regarding the new structure of the sampling region 
on the basis of blocks, the new sample volume is 

1n n n nN B N= ≤K , where d d
n n nB β β= =∩]U  is the 

volume of each block. For simplicity, we will assume 
that 1n nN N= , i.e. the sampling region nD  is covered 
by nK  blocks of volume nβ . In order to achieve a 
spatial separate block bootstrap sample, firstly, a block 
is randomly selected for each n∈k K  from the set of 

Archive of SID

www.SID.ir

http://www.nitropdf.com/
http://www.sid.ir


Optimum Block Size in Separate Block Bootstrap… 

357 

separate blocks ( ){ }:n nD ∈k k K  and independent from 
other blocks. Then, using the observations in all k  
resampled blocks, and by joining them together, the 
bootstrap sample is obtained. In other words, assuming 
that { }: nI ∈k k K  is a set of i.i.d. random variables with 
common distribution  

( ) 1 , ,i ik n
n

P I = = ∈K
K

 (3) 

then for each n∈k K , the subsample of separate block 

bootstrap is achieved as ( )( ) ( )( )n n n nD D I=*
kZ k Z . 

Now, the separate block bootstrap sample; ( )n nD*Z  is 
specified through joining up the observations in the 
resampled blocks as ( )( ){ }:n n nD ∈*Z k k K . Then, the 

separate block bootstrap estimator of n̂θ  and 2
nσ  are 

defined as ( )( )* *
n̂ n n nt Dθ = Z  and ( ) ( )2 *

*
ˆˆ Varn n n nNσ β θ=  

respectively, where *Var  denotes the bootstrap 
conditional variance given nZ  observations. When 

( )2ˆn nσ β  does not have a closed form, a Monte Carlo 
simulation and B  times repetition of the previous 
processes gives * *

,1 ,
ˆ ˆ, ,n n Bθ θ… , then the separate block 

bootstrap estimate of ( )2ˆn nσ β  is approximated by 

( ) n ( )
2

2 * * *
* , ,

1 1

1ˆ ˆ ˆˆ Var
B B

n
n n n n n b n b

b b

N
N

B B
σ β θ θ θ

= =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ ∑� . 

When the bootstrap estimation for the sample mean 

n̂ nZθ =  is required, Iranpanah and Mohammadzadeh 
[8] showed that ( )2ˆn nσ β  is a consistent estimator for 

( )
( ) ( )

2 =lim Var

E .
k

0 kd

n n nN Z

Z Z

σ

μ μ

∞ →∞

∈
= − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑ ]

 

Iranpanah and Mohammadzadeh [9] also proved a 
similar property for kriging spatial predictor. However 
since the precision of the estimator ( )2ˆn nσ β  is severely 
sensitive to the block size nβ , finding the optimum 
block size will be considered in the following section. 

Preliminaries 

Assume that under sampling structure of the previous 
section, the sampled mean ( )1

1
nN

n n ii
Z N Z s−

=
= ∑  is an 

estimator for the mean of random field, i.e. 

( )E Zμ = ⋅⎡ ⎤⎣ ⎦ , based on nZ  observations. If 

( )* 1 *
1
n

n

N
n ii

Z N Z s−
=

= ∑  is the sample mean based on the 

bootstrap sample *
nZ  in SBB method, then the bootstrap 

estimate of ( )2 Varn n nN Zσ =  will be considered as 

( ) ( )2 *
*ˆ Var

nn n nN Zσ β = . To do so, first some prelimi-

nary definitions, assumptions, and conditions that are 
required in the next lemmas and theorems will be 
presented. 

For the vector ( )1, , d
dx x ′= ∈… \x , the Euclidean, 

1L  and L∞  norms are represented as 2
1

d
ii

x
=

= ∑x , 

1 1

d
ii

x
=

= ∑x  and { }1max i d ix≤ ≤∞
=x  respectively. 

Distance of the two sets 1 2, dE E ⊂ \  is defined as 

( ) { }1 2 1 2dis , inf : ,E E E E
∞

= − ∈ ∈x y x y . 

Assume that ( )Z TF  denotes the σ-field generated by 

random variables; ( ){ }: dZ s s T∈ ⊂ ] . If ( )1 2,T Tα =�  

( ) ( ) ( ) ( ) ( ){ }1 2sup : ,Z ZP A B P A P B A T B T− ∈ ∈F F∩  

where 1 2, dT T ⊂ ]  then the α − mixing index for the 
random field is defined as  

( )
( ){
( ) }
1 2

1 2

,

sup , : , ,

1, 2;dis , .

d
i i

k

T T T T

i T T k

α

α= ⊂ ≤

= ≥

A

� ] A  (4) 

The required assumptions and conditions for the 
following lemmas and theorems are:  

(i) If n →∞  then ( ) ( )11 1 1d d
n n n oβ β λ+− −+ = . 

(ii) ( ) ( )2 0,dσ σ∞ ∈
= ∈ ∞∑ ]k

k , where 

( ) ( ) ( )( )Cov ,Z Zσ = +k s s k . 

(iii) ( ) ( ){ }1 2 1 2 1 1 2sup , : , , ,dis ,dT T T T T l T T kα ⊂ = ≥� ]  

( )do k −= . 

(iv) There exist non-negative functions ( )1α ⋅  and 

( )g ⋅ , so that ( )1lim 0k kα→∞ = , ( )lim g→∞ = ∞A A  and 

( ) ( ) ( )1, , 0, 0k k g kα α≤ > >A A A . 

( rv ) For r +∈] , 1 1δ< ≤ , 0 p< <  ( )2 1 1r d− −  

( )2r δ δ+ , [ )1,x∈ ∞  and 0c > , we have  

( ) 2
E

r
Z s

δ+
< ∞ , 

( )
( ) ( )2 1 1 2

11

r d r

m
m m δ δα

− −∞ +

=
< ∞∑  

and ( ) pg x cx≤ . 
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The growth rates for the blocks and the sampling 
region; nD  are presented in the assumption (i). The 
assumption (ii) shows that finite asymptotic variance 

2 2limn nσ σ∞ →∞=  exists. The central limit theorem 
(Bolthausen [1]) is valid for ( )Z ⋅  on the sets of 
increasing domain under the assumption (iii), having 
limits on 0D , assumption (iv) and conditions ( rv ). The 
assumption (iv) is a proper bound for α − mixing index 
in the equation (4). The assumption (iv) and conditions 
( rv ) also provide proper bounds for moments of 
observations. For the random fields under the 
assumption (iv), the distance bound ( )1α ⋅  decreases 

with an exponential rate while the size of ( )g ⋅  
increases with a polynomial rate. The assumptions (ii)-
(iv) are needed for mixing and momentum conditions 
presented in the conditions ( rv ). Some examples of 
random fields with weak dependency under the 
assumption (iv) and conditions ( rv ) are: Gaussian 
random fields with analytical spectral density, certain 
linear fields with moving average representation or 
autoregressive such as m-dependent fields, ( )1AR  

( )1AR×  separable lattice processes for modeling in 
2\ , some Markov and Gibbs random fields and time 

series models (Doukhan [4]). 

Optimal Block Size 

In this section, without loss of generality, we assume 
0μ = . 

 
Lemma 1. In SBB method, if ,nZk  is the sample mean 
of nB  observations in the k th block ( n∈k K ), then 

( )*
*E n nZ Z=  and ( ) ( )22*

* ,Var
n

n n n nZ Z Z
∈

= −∑ kk K
K . 

Proof. Since, each n∈k K  blocks in SBB method is 
achieved as i.i.d. through common distribution in (3), 
then  

( ) ( )

( )

( )

,

,

* 1 *
* * 1

1 *
*

*
*

1
,

1
1

E E

E

E

,

n

nn

n

n

n

N
n n ii

n

n n

N
n ii

n

Z N Z s

Z

Z

Z

N Z s

Z

−
=

−

∈

−

∈

−
=

⎡ ⎤= ⎣ ⎦
⎡ ⎤= ⎣ ⎦

=

=

=

=

∑
∑

∑
∑

k

0

k

kk

K

K

K

K

 

( ) ( )

( )
( )

,

,

* 1 *
* * 1

1 *
*

1 *
*

22
,

Var Var

Var

Var

.

n

nn

n

n

N
n n ii

n

n

n n n

Z N Z s

Z

Z

Z Z

−
=

−

∈

−

−

∈

⎡ ⎤= ⎣ ⎦
⎡ ⎤= ⎣ ⎦

=

= −

∑
∑

∑ ,

k

0

k

kk

K

K

K

K

K

 

 
Lemma 2. (Doukhan [4]): Assume 1T  and 2T  as subsets 
of d]  and p  and q  are non-negative values that 
satisfy in 1 1 1p q+ < . If the random variables; iX  are 
measurable with respect to ( ) , 1, 2Z iT i =F , then 

( )

( ) ( )
( ) ( )

1 2

1 1

1 2

1 1 1

1 2 1 2

Cov ,

8

dis , ;max , ,

p qp q

p q

X X

X X

T T T Tα
− +

≤ Ε Ε

⎡ ⎤⎣ ⎦

 

where expectations exist and 1 2dis( , ) 0T T > . 
 
Lemma 3. (Doukhan [4]): If r +∈] , then under the 
conditions (iii)-( rv ) for 1 2m r≤ ≤  and each dT ⊂ ] , 
we have 

( ) ( ) ( ) 22E , E
s

s
m

m mm
n n

T

Z C N Z C Tα α −−

∈

≤ ≤∑ , 

where ( )C α  is a fixed value that depends only on the 

coefficient ( ), , 2k rα ≤A A  and ( ) 2

E
r

Z
δ+

s . 

 
Lemma 4. (Bolthausen [2]): Under the conditions (ii)-
( rv ), 0,n n dB Z Z∞→  as n →∞ , and for 1, 2j = , we 

have ( ) ( ) ( )
2 2 2

0,E E 2 1
j jj j

n nB Z Z j σ∞ ∞→ = − , where 

0,nZ  is the sample mean of the block including the 

origin, and ( )20,Z N σ∞ ∞∼ . 

 
Lemma 5. Under the assumption (i), 0 1d

n nN Dλ →  as 
n →∞ . 
Proof. It is enough to show that 1

0
d d

n n nN D Cλ λ −− ≤ . 

Therefore, first, we have to find an upper bound for nN . 

( ]( ){ }0: 1 2,1 2i i dd c
n nN Dλ≤ ∈ + − ∩ = ∅]  
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{{
( ] }

{
[ ] }

{
[ ] }

0

0

1
0 0

0

1
0 0

1
0

1
0

: ,

; 1 2,1 2

: ,

; 1,1

2 : ,

; 0,1

.

i

i

i

i

d i c
n

di i
n

d i c
n n n

di i
n

d d i c
n n n

di i
n n

d
n n

T D

T D T

D T D

T D T i

D T D

T D T i

D C

λ

λ

λ λ λ

λ

λ λ λ

λ λ

λ λ

−

−

−

−

+ ∈ ∩ ≠ ∅

∩ ≠ ∅ = + −

≤ + ∈ ∩ ≠ ∅

∩ ≠ ∅ = + −

≤ + ∈ ∩ ≠ ∅

∩ ≠ ∅ = +

≤ +

]

]

]

 

The last inequality is obtained from the bound 
condition on 0D . In the same way a lower bound for 

nN , is specified as 

( ]( ){ }
( ]( ){ }

{
( ] }}

0

0

0 0

1
0

: 1 2,1 2

: 1 2,1 2

: , ;

1 2,1 2

.

i i

i i

i

i

dd c
n n

dd c
n

d i c i
n n

di

d
n n

N D

D

T D T D

T

D C

λ

λ

λ λ

λ λ −

≥ ∈ + − ∩ ≠ ∅

≥ ∈ + − ∩ = ∅

− ∈ ∩ ≠ ∅ ∩ ≠ ∅

= + −

≥ −

]

]

]

,

 

 
Lemma 6. Under the assumptions and conditions (ii)-
( rv ), ( )2 2 1 d

n nO Nσ σ −
∞− = , as n →∞ . 

Proof. For each d∈]k  assume that 

( ) { }:d
n n nN D D≥ ∈ ∩ + ∈]k i i k  to be the number of 

common locations in the sampling region of nD  and its 
k -transfer. It is obvious that ( )n nN N≤k  and therefore 
taking into account the bound condition on 0D , we have 

( ) {
[ ] }

( ) ( ) {
[ ] }

( )

0

0

1
0

1
0

1

: ,

; 1,1

3 : ,

; 0,1

3 .

k i

i k

k k i

i

k k

d i c
n n n

di i
n

d d i c
n n n

di i
n n

d d
n n

N N T D

T D T

N T D

T D T

N C

λ

λ

λ λ

λ λ

λ

∞

−
∞

−

−
∞

≤ + ∈ ∩ ≠∅

∩ ≠∅ = + −

≤ + ∈ ∩ ≠∅

∩ ≠∅ = +

≤ +

]

]  (5) 

Also using Lemma 2 and stationarity of ( )Z ⋅ , for 

each 0 d≠ ∈]k , we have 

( ) ( ) ( ) ( )
( ) ( )

( ) ( )

2 2 22

2

1

8 E ,1

.

k s k

k

r r rr r

r

Z

C

δ δ δδ

δ δ

σ α

α

+ ++

∞

+

∞

⎡ ⎤≤ ⎢ ⎥⎣ ⎦

≤

 (6) 

Since { } ( ) 1: 4 2 1 dd m m −

∞
∈ = ≤ +]k k , tacking 

summation of both sides of (6) implies that the 
covariances are absolutely sumable on d] , i.e. 

( ) ( ) ( ) ( ) ( )1 2
1

1

2 2 1 .
dk

k 0 d r

m

C m m δ δσ σ α
∞

− +

=∈

≤ + + <∞∑ ∑
]

 (7) 

Finally, by equations (5) and (7) and Lemma 5, we 
have  

( )

( ) ( )

( ) ( )

( ) ( )

( )

2 2 1 2

1 2

1

21 1 2 1
1

1

1

Var

.

d
n

d

d

n n
D

n n

n n n

rd d
n n

m

d
n

N Z

N N

N N N

CN m m

O N

δ δ

σ σ σ

σ σ

σ

λ α

−
∞ ∞

∈

−
∞

∈

−

∈

∞
+− − −

=

−

⎡ ⎤
− = −⎢ ⎥

⎢ ⎥⎣ ⎦
= −

≤ −

≤

=

∑

∑

∑

∑

∩]

]

]

,

s

k

k

s

k k

k k  

To specify optimum block size nβ  through 

minimizing asymptotic ( )2ˆMSE n nσ β⎡ ⎤⎣ ⎦ , we must 

specify asymptotic bias and variance of the separate 
block bootstrap estimator:  

( ) ( )212
,ˆ .k

k n

n n n n n nB Z Zσ β −

∈

= −∑
K

K  (8) 

 
Theorem 1. Under the assumptions and conditions (i)-
( rv ), the asymptotic bias of ( )2ˆn nσ β  equals to 

( ) ( )( ) ( )2 2 0
0 1

ˆE 1 1 ; .
k

k k
d

n n n
n

B
o Bσ β σ σ

β ∈

⎡ ⎤− =− + =⎣ ⎦ ∑
]

 

Proof. For each d∈]k , suppose that 

( ) ( ) ( ){ }:d d
n n nB D D= ∈ + ∈∩] ∩]k i 0 i k 0  is the 

number of common block locations including the origin 
( )nD 0  and its −k transfer. It is clear that ( )n nB B≤k  

taking into account the equation (8), stationarity of the 
process, the assumption 1 and the Lemmas 3 and 5, we 
have 
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( )

( ) ( )

( )
( )

( )

( ) ( ) ( )
( ) ( ) ( )

12 2 2
,

2 2
,

2

1

1 1

1
2 1

1

ˆE E

E E

E

+

+ .

k
k

0

s 0

k

k

s

k k

k
k

d
n

d

d

n n n n n

n n n

n n n
D

n n n

d
n nn

nd
n n

B Z Z

B Z Z

B Z O B N

B B o

B B
o

B

σ β

σ β

β
σ σ β

β

−

∈

−

∈

− −

∈

−
−

∞−
∈

⎛ ⎞
⎡ ⎤ = −⎜ ⎟⎣ ⎦ ⎜ ⎟

⎝ ⎠
⎡ ⎤= −⎣ ⎦

⎡ ⎤
= +⎢ ⎥

⎢ ⎥⎣ ⎦

=

−
= − +

∑

∑

∑

∑

n

n
K

K

∩]

]

]

 (9) 

For each d∈]k , the block containing the origin 
( )nD 0 , as in Lemmas 5 and 6, for the sampling region 

nD , we can show that 

( )
( ) ( )( )11

1

0

, .

k

k k k

n n

d dd
n n n n

B B

C B Bβ β − −−
∞

≤ −

≤ − →
 (10) 

As a result, by the equations (6) and (7) in Lemma 6, 
we have 

( ) ( ) ( )

( ) ( )

1

22 1
1

1

.

k k

k
k k k

d d

dn n
d
n

rd

m

B B
C

C m m δ δ

σ σ
β

α

− ∞
∈ ∈

∞
+−

=

−
≤

≤

< ∞

∑ ∑

∑

] ]

 (11) 

Now, using the dominated lebesque convergence 
theorem and equation (10), we have 

( ) ( ) ( ) ( )( )1 1
1 1 .

k k

k
k k k

d d

n n
d
n

B B
oσ σ

β −
∈ ∈

−
= +∑ ∑

] ]

 (12) 

Then, using assumption (i) and the Lemmas 5 and 6, 

( )2 2 1
n noσ σ β −

∞− = . Therefore, on the basis of the 

equations (9) and (12), we have 

( ) ( ) ( )( )

( )( )

2 2
1

0

1ˆE 1 1

1 1 .

d
n n n

n

n

o

B
o

σ β σ σ
β

β

∈

⎡ ⎤ − = − +⎣ ⎦

= − +

∑
]

,

k

k k
 

 
Theorem 2. Under the assumptions and conditions (i)-
( rv ), we have  

( ) ( )( )
2

2 2ˆVar 1 1 .n
n n

n

B
o

N
σ

σ β ∞⎡ ⎤ = +⎣ ⎦  

Proof. Taking into account equation (8), we have  

( )

( ) ( )

12 2 2 2
,

22 2
,

12 2 2
,

1 2 3

ˆVar Var

Var

Var 2 Cov ,

2 .

k
k

k
k

k
k

n n n n n

n n

n n n

B Z Z

B Z

Z Z Z

T T T

σ β −

∈

−

∈

−

∈

⎛ ⎞
⎡ ⎤ = −⎜ ⎟⎣ ⎦ ⎜ ⎟

⎝ ⎠
⎡ ⎛ ⎞

= ⎢ ⎜ ⎟⎜ ⎟⎢ ⎝ ⎠⎣
⎤

+ − ⎥
⎦

= + −

∑

∑

∑

n

n

n

n
K

n
K

n
K

K

K

K

 (13) 

Since the process is stationary, we have  

( )

( )
( )

( )

( )

22 2
1 ,

22 2
,

2 2
, ,

12 2
,

2 2
, ,

4 5

Var

Var

Cov ,

Var

Cov ,

.

k
k

k
k

k l
k l k

0

0 k
0 k

n n

n n

n n

n n

n n

T B Z

B Z

Z Z

B Z

Z Z

T T

−

∈

−

∈

∈ ≠ ∈

−

≠ ∈

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
⎡

= ⎢
⎣

⎤
+ ⎥

⎥⎦
⎡= ⎣

⎤
+ ⎥

⎦
= +

∑

∑

∑ ∑

∑

n

n

n n

n

n
K

n
K

K K

n

K

K

K

K

 (14) 

With regard to the Lemma 3, 

( ) ( )2 2 2
,E En nB Z Z σ∞ ∞→ =0  and ( ) ( )2 4 4

,E E0n nB Z Z ∞→  

43σ∞= , as n →∞ . Therefore ( )2
,Var 0n nB Z →  

( )2 4Var 2Z σ∞ ∞=  . As a result, we have 

( ) ( )( ) ( )( )1 2 4 1
4 = Var 1 1 =2 1 1 .n nT Z o B N oσ− −

∞ ∞+ +nK  (15) 

For each ∈k nK , we assume that 

( ) ( ) ( )ndis dis ,d d
n n nD D β⎡ ⎤≡ ≥⎣ ⎦∩] ∩]k 0 k  is the 

distance of the block including the origin ( )nD 0  and 

separate block ( )nD k . As a result, due to the 
stationarity of the process, assumptions and conditions 
(iv) and ( rv ) and the Lemmas 2 and 3, we have 

( ) ( )( ) ( )

( ) ( )

( ) ( ) ( )

2 222 2 2
, , ,

2

n

2 2 1 12
1 n

Cov , 8 E

dis ,

dis .

0 k 0

k

k

r rr r

n n n

r

n

r r d
n n

Z Z Z

B

CB

δδ

δ δ

δ δ

α

α β

++

+

+ − −−

≤

⎡ ⎤⎣ ⎦

⎡ ⎤≤ ⎣ ⎦
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Since ( ){ } ( ) 1
n: dis d

nm C mβ −
∈ = ≤ +k knK , we 

conclude that 

( )
( ) ( ) ( )

( )

12 2 2
5 , ,

1 22 1 1
1

Cov ,

.

0 k
0 k

n

n n n

rr d

m

n n

T B Z Z

C m m

o B N

δ δ

β

α

−−

≠ ∈

∞
− +− −

=

=

≤

=

∑

∑
n

n
K

n

K

K  (16) 

Using Lemma 3, we will have 

( ) ( )
( ) ( )

2 2 2 4
2

22

Var E

.

n n n n

n n nn

T B Z B Z

O B N o B N

= ≤

= =
 (17) 

Using Cauchy-Schwartz inequality and equations 
(13)-(17) we can write 

( ) ( ) ( ){ }
( )

1 2
4

3 1 2 2

.

n n n n n n

n n

T T T B N o B N o B N

o B N

σ∞⎡ ⎤≤ +⎣ ⎦

=
 (18) 

Finally, using the equations (13)-(18), Theorem 2 is 
proved. ,  

Theorems 1 and 2 show that ( )2ˆn nσ β  is a MSE-

consistent estimator, so it is also consistent for 2
nσ . Bias 

and variance of the estimator ( )2ˆn nσ β  depend on the 
block size nβ . Increase in the block size nβ  leads to 
decrease of the bias and increase of the variance 
estimator nβ . The best block size nβ , can be found by 
minimizing a combination of bias and variance of the 
estimator ( )2ˆn nσ β . 
 
Theorem 3. Under the assumptions and conditions (i)-
( rv ), the size of asymptotic optimum block size for 

( )2ˆn nσ β  is determined by  

( )

( )( )
1 22

opt 0
4 1 1 .

d

n
n

N B
o

d
β

σ

+

∞

⎛ ⎞
= +⎜ ⎟
⎝ ⎠

 

Proof. Value of opt
nβ  can be achieved by minimization 

of  

( ) ( )( ) ( )

( )( )

2
2 2 2

2 4
0
2

ˆ ˆ ˆMSE Bias Var

2
1 1 ,

n n n n n n

d
n

nn

B
o

N

σ β σ β σ β

σ β
β

∞

⎡ ⎤⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦⎣ ⎦
⎛ ⎞

= + +⎜ ⎟
⎝ ⎠

 

with respect to nβ . ,  
The optimum block size opt

nβ  depends on two 

unknown parameters 0B  and 2σ∞ . In this paper we used 
the nonparametric plug-in method suggested by Lahiri 
et al. [14] to estimate these parameters as well as ˆ

nβ . 
This method was originally presented for time series but 
we have extended it to spatial lattice data. Suppose that 
the primary block sizes ,1nβ  and ,2nβ  are sequences of 
positive integers, so that they satisfy the assumption (i). 
On the basis of the primary block size ,1nβ , the part 

variance 2σ∞  is estimated as ( )2 2
,1ˆn nσ σ β∞ = . Also for 

the biased element 0B , based on two variance estimates 

of separate block bootstrap using ,2nβ , we presented 

the estimator ( ) ( )2 2
0 ,2 ,2 ,2

ˆ ˆ ˆ2 2n n n n nB β σ β σ β⎡ ⎤= −⎣ ⎦ . 

Therefore using the nonparametric plug-in method the 
optimum block size is estimated as 

( ) ( )1 2
2 4
0

ˆ ˆ ˆ
d

n nN B dβ σ
+

∞= . 

 
Theorem 4. Under the assumptions and conditions (i)-

( rv ), opt

ˆ
1,Pn

n

β
β

⎯⎯→  as n →∞ . 

Proof. Using Theorems 1 and 2, 0B̂  and 2σ̂∞  are MSE-
consistent estimators of 0B  and 2σ∞ , respectively. 

Therefore, ˆ
nβ  is a consistent estimator of nβ . ,  

Nonparametric plug-in estimator ˆ
nβ , depends on two 

primary block size parameters ,1nβ  and ,2nβ . Using the 
Theorem 3, the optimum rate of the primary block size 
of ,1nβ  to estimate the variance part of 2σ∞  equals to 

( )1 2d
nN +  and for ,2nβ  as the bias part of 0B , equals to 
( )1 4d

nN + . Therefore, their acceptable choices are 
( )1 2

, ; 1, 2d i
n i i nC N iβ += = . Our numerical studies show 

that the proper values for 1C  and 2C  in the interval 
[0.5,2] are those with 0.25 distances and therefore we 
suggest that { }1 0.5,0.75C = , 2 0.5C = , respectively. 

Simulation Study 

In this section, first we determine opt
nβ  and then ˆ

nβ  
by nonparametric plug-in method and evaluate them by 
a Monte Carlo simulation study. Suppose that 

( ){ }:Z ∈`2s s  is a second order stationary Gaussian 

random field with zero mean and exponential 
covariogram defined by 
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( )
0 1

1

0
;

0
h

a

c c h
h

c e h
σ γ −

⎧ + =
⎪= ⎨
⎪ ≠⎩

 

where ( )0 1, ,c c aγ =  are nugget effect, partial sill and 
range, respectively. Regarding the two models with 
parameters ( )1 0.5,0.5,0.5γ =  and ( )2 1,1,1γ = , we can 
generate the samples in a square regular grid in three 
regions through Choleski decomposition (Cressie [3]) 
method against ( ]2

0 0,1D =  and nλ =12, 24, 48. If 

n̂ nZθ =  is the sample mean in the grids, separate block 

bootstrap estimator of ( )2 ˆVarn n nNσ θ=  is given by 

( ) ( )212
,ˆ

n

n n n n n nB Z Zσ β −

∈

= −∑ k
k K

K , where nZk,  is the 

sample mean of 2
n nB β=  observations in the separate 

blocks:  

( ) ( ] ( ]

( )
1 1 2 2

2 1
1 2 1 2

, , ;

, ,0 , .

k kn n n n n n n

n n

D k k k k

k k k k

β β β β β β

λ β −

= − × −

′= ∈ < <`
 

We will consider separate block sizes nβ  for the 
three values of nλ , respectively (2, 3, 4, 6), (2, 3, 4, 6, 8, 
12) and (2, 3, 4, 6, 8, 12, 16, 24). Then the value of 2

nσ  
in model 1 for the three values of nλ  will be 1.430, 
1.436, 1.480, and in model 2 it will be 6.311, 6.890, 
7.193, respectively. The limit values of 2σ∞  for the two 
models are 1.483 and 7.286, respectively. Now for the 
two models and the three values of nλ  and also the 
considered value of separate block size nβ , the amount 
of ( )2ˆn nσ β  are calculated. 

Table 1 shows the approximate values of bias 

( )2 2ˆE 1n n nσ β σ⎡ ⎤−⎣ ⎦ , variance ( ) ( )( ) 2
2 2 2ˆ ˆE En n n n nσ β σ β σ⎡ ⎤−⎣ ⎦  

and mean square error ( ) 22 2ˆE 1n n nσ β σ⎡ ⎤−⎣ ⎦ , as 

relatively on the basis of 10000 repetitions of Monte 
Carlo simulation. As can be seen, an increase of the 
block size nβ  leads to a decrease in the bias value and 
an increase in the variance value for both models and 
the three states of nλ . These results are nearly in 
conformity to the asymptotic results in Theorems 1 and 
2. The values of bias, variance and non relative MSE in 
model 2, with stronger correlation structure, are greater 
than the one in model 1, with weaker correlation 
structure and in conformity to the results of the 
Theorems 1, 2 and 3. Optimum block size values opt

nβ  

can be achieved through comparing MSE values and 
finding their minimum amounts which are for the three 
values of nλ  in the models 1 and 2 are 2, 3, 4 and 3, 6, 
8, respectively. Comparison of the various values of 

opt
nβ  shows that when the sample size 2

n nN λ=  
increases, the opt

nβ  increases too. Also opt
nβ  value is 

greater in the models with stronger correlation structure 
comparing to the models with weaker correlation 
structure. 

Now the nonparametric plug-in estimator 

( ) ( )1 2
2 4
0

ˆ ˆ ˆ
d

n nN B dβ σ
+

∞=  is evaluated numerically 

through a simulation study. Estimates of two quantities 

( ) ( )2 2
0 ,2 ,2 ,2

ˆ ˆ ˆ2 2n n n n nB β σ β σ β⎡ ⎤= −⎣ ⎦  and ( )2 2
,1ˆ ˆn nσ σ β∞ =  

depend on the primary block sizes ,1nβ  and ,2nβ  whose 

suggested values are ( )1 2
, ; 1, 2d i

n i i nC N iβ += = . Also 
regarding the empirical results, in the present paper we 
used the values { }1 0.5,0.75C =  and 2 0.5C = . Table 2 
shows frequency of various values of the nonparametric 
plug-in estimates of the block sizes ˆ 1, 2, ,8,9nβ

+= …  in 
1000 time repetition of Monte Carlo simulation for the 
two models 1 and 2, the three values of nλ  and the two 
values of 1C . The last column of Table 2 shows 
optimum block size values of opt

nβ  gained from Table 1 
for various models. For example, for the first row of 
Table 2 at first two primary suggested block sizes 

( )1 4
,1 0.5 144 2nβ = �  and ( )1 6

,2 0.5 144 2nβ = �  are 
calculated, then the separate block bootstrap estimate of 

( )2ˆn nσ β  are obtained from blocks with the sizes 2 and 4 
of the simulated data. Then two values 

( ) ( )2 2
0

ˆ ˆ ˆ4 4 2n nB σ σ⎡ ⎤= −⎣ ⎦  and ( )2 2ˆ ˆ 2nσ σ∞ =  are 

calculated and lastly the nonparametric plug-in estimate 

for the block size is obtained as ( )1 4
2 4
0

ˆ ˆ ˆ144 2n Bβ σ∞= , 

which may be one of the block sizes 1, ,9+"  in Table 2. 

As can be seen opt
nβ  equals the mode of ˆ

nβ  resulting 

from Table 1 in different situations. This shows that ˆ
nβ  

is a proper estimate for opt
nβ . 

Results and Discussion 

Since precision of estimators in SBB method 
depends on block size, the optimum block size is 
asymptotically specified for bootstrap estimation of the 
sample mean variance of lattice data and its 
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Table 1. Approximations of bias, variance and MSE of the separate block bootstrap estimates of ( )2ˆn nσ β  as relatively on 10000 
repetitions of Mont Carlo simulation 

   Model 1    Model 2  
λn βn Bias Var MSE  Bias Var MSE 

12 2 
3 
4 
6 

-0.213 
-0.184 
-0.193 
-0.290 

0.035 
0.087 
0.160 
0.335 

0.081 
0.121 
0.196 
0.419 

 -0.555 
-0.461 
-0.406 
-0.422 

0.013 
0.042 
0.090 
0.224 

0.322 
0.254 
0.255 
0.402 

24 2 
3 
4 
6 
8 
12 

-0.211 
-0.158 
-0.132 
-0.127 
-0.163 
-0.281 

0.009 
0.023 
0.044 
0.098 
0.176 
0.356 

0.053 
0.047 
0.061 
0.114 
0.203 
0.435 

 -0.575 
-0.463 
-0.383 
-0.297 
-0.274 
-0.344 

0.003 
0.010 
0.023 
0.069 
0.132 
0.281 

0.334 
0.224 
0.169 
0.157 
0.207 
0.400 

48 2 
3 
4 
6 
8 
12 
16 
24 

-0.214 
-0.155 
-0.124 
-0.091 
-0.088 
-0.090 
-0.139 
-0.264 

0.003 
0.007 
0.013 
0.033 
0.058 
0.133 
0.223 
0.409 

0.048 
0.031 
0.029 
0.041 
0.066 
0.141 
0.242 
0.478 

 -0.588 
-0.475 
-0.389 
-0.283 
-0.227 
-0.186 
-0.196 
-0.294 

0.001 
0.003 
0.006 
0.019 
0.039 
0.100 
0.185 
0.363 

0.347 
0.228 
0.158 
0.099 
0.091 
0.135 
0.224 
0.449 

 
 

Table 2. Frequency ˆ
nβ  on 1000 repetitions of the Mont Carlo simulation 

       ˆ
nβ       

Model λn C1 1 2 3 4 5 6 7 8 9+ β opt
n  

 12 0.5 
0.75 

91 
126 

292 
276 

241 
213 

211 
188 

126 
118 

26 
50 

4 
14 

0 
3 

0 
2 

2 

1 24 0.5 
0.75 

118 
100 

170 
205 

275 
288 

235 
256 

143 
121 

36 
14 

9 
5 

0 
1 

0 
0 

3 

 48 0.5 
0.75 

53 
59 

131 
142 

250 
228 

254 
253 

211 
213 

84 
81 

7 
16 

0 
0 

0 
0 

4 

 12 0.5 
0.75 

74 
101 

179 
186 

216 
285 

209 
212 

185 
146 

96 
51 

30 
13 

1 
1 

0 
0 

3 

2 24 0.5 
0.75 

21 
7 

60 
10 

112 
46 

201 
102 

245 
296 

294 
458 

61 
81 

2 
0 

0 
0 

6 

 48 0.5 
0.75 

0 
0 

0 
1 

4 
2 

10 
7 

50 
59 

197 
354 

286 
47 

392 
530 

61 
0 

8 

 
 

nonparametric plug-in estimate has been presented. 
Also in a Monte Carlo simulation study on spatial data, 
the theoretical and asymptotic results have been 
evaluated. The optimum block size can be specified for 
kriging spatial predictor as in sample mean of spatial 
lattice data. Also, we can similarly consider the 

optimum block size for the bootstrap estimate of bias 
estimators of a random field. 
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