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Abstract

Stefan problem with kinetics is reduced to a.system of nonlinear Volterra
integral equations of second kind and Newton's method is applied to linearize it.
Product integration solution of the linear form is found and sufficient conditions
for convergence of the numerical method are given. An example is provided to

illustrated the applicability of the method.
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Introduction

Consider the following modified one-phase Stefan
problem in one spatial Variable,

Uy =uyy —yu —0<x <st), (1)
wl ),
Ox |y =5 (1) 2)

g(u|x:s(t)) =V (t),

u(x,0)=u’(x), 3)

where u(x,t) is the temperature and y >0. The
damping term is due to volumetric heat losses. The two
boundary conditions determine the problem and make it
possible to find the free boundary with position s(¢),
and velocity V (#)=s(¢).

Further assume that g(f) is monotonically

decreasing differentiable function on [0,0) with
|gv|SC and satisfying

—Voﬁg(t)S—vo @

for some vV, >o0.

The free boundary problem (1)—(3) arises naturally

as a mathematical model of a variety of exothermic
phase transition type processes, such as condensed
phase combustion [6] also known as self-sustained high-
temperature synthesis or SHS [7], solidification with
undercooling [5], laser induced evaporation [4], rapid
crystallization in thin films [9] etc. These processes are
characterized by production of heat at the interface, and
their dynamics is determined by the feedback
mechanism between the heat release due to the kinetics
glul, _ (z)) and the heat dissipation by the medium.

The first boundary condition in (2) (the Stefan boundary
condition) expresses the balance between the heat
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produced at the free boundary and the heat diffusion
through the adjacent medium. Problem (1)—(3)

describes propagation of the phase transition front, the
second boundary condition (2) is a manifestation of the
non-equilibrium nature of the transition; and its analog
for the classical Stefan problem is just u | _ 0= 0. In

the context of condensed phase combustion kinetic
boundary condition expresses dependence of
propagation velocity on the flame front temperature.

The rest of the paper is organized as follows. In
Section 1 a local existence condition is obtained. In
Section 2 the Stefan problem with kinetics reduced to a
system of nonlinear Volterra integral equations of the
second kind and Newton's method is applied to linearize
it. A convergence analysis of Newton’s method for the
problem is provided in the subsections of Section 2.
Product integration solution of the linear form is
obtained in section 3. Convergence of product
integration method is given in Subsection 3.1. Finally in
section 4 numerical results of test problem solved by the
proposed method is reported.

1. Existence of Local Classical Solution

In order not to clutter formulas with factors of the
type e, from now on until section 4 we set-the
damping coefficient y =0. The modifications to the
y >0 case are trivial. A short-time solution of the free

boundary problem (1)-(3) will be sought in‘the form of a
superposition of heat potentials,

u(x t) = j;G(x,s(r),t —)ole)ds
(5)
+f G.enu e,

where G is the fundamental solution of the heat

equation,

Gl &t =)= exp{-@}[%(r e (©6)

4t -7
The density of the single layer potential ¢ and the
front position s(¢) are to be determined.
Frankel and Roytburd in Ref [3] shown that the
single layer potential is continuous up to the boundary
and its derivative possesses the standard jump property

Jim [ G s (0 - Dp(rd T =

o(t)

T“LIO G, (s(),s(z)t —t)p(r)d7.(7)

Babayar-Razlighi et al.

52

J. Sci. I. R. Iran

This result is, of course, well-known if ¢ is
continuous. It turns out however, that by the nature of

the free boundary problem at hand, ¢ must have a %

t
singularity at ¢ =0. Thus a justification of (7) will
require an extra effort. If the jump property in (7) holds
then for the solution represented by (5), the boundary
condition in (2) yield the following equations

u(s@).) =g ' @)

- j;c;(s ()5 (1)t —=1)(r)dT

' Gls@)Enm @, ®
u, (s (@) =V (©) =@

.G ()8 (2). —Dp(r)d e

S ACOERET o

where ¢ satisfies the balance condition

u’(0)
I

We can rewrite the integral equations in (8)-(9) in
terms of @ and V' [3]:

V=K. (10)

¢ ==2K\V,p)+ K,V .9), (11)

where the nonlinear operators K, and K, are defined

limi () =

as follows

K0 .9)=g{[,G6 0@ ~r)p(e)e

+f Ge@.en @ael. (12)

K0 .0)=2{[[G. 605 ()t ~0)p(e) T

oG8 ©ael. (13)
here as usual,

s@) =V (. (14)

The equations are supplemented by the initial

conditions
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u’(0)
7

The proof of the following theorem is given in [3]

v (0) =g’ (0),limVro) = (15)

Theorem 1. Let g <0 be continuously differentiable,
monotone decreasing function, u° e C (~o0,0],u’ > 0.
Then the problem in (10)-(11) has a unique solution
V,p such that ¥ and x/;go(t) are continuous on [0,0]
. The
solution to the free boundary problem is determined by

V,p via the representation (5) with s(¢) = I;V (r)dr .

for some o >0, where o depends only on Supu’

2. Application of the Newton's Method

Now we apply a Newton's method to linearize of the
problem (10)-(11). For this purpose we take

U= {{V } V () eC[O,G]},
)

with the norm,

llly= sup Vo)),

di

We know that U is a Banach space with above
norm. Introducing an operator 7 :U_— U through the
formula

= max{||V k10,0101l @ |L7}

el ®
where

fiV o) =V —K, (7 9), (17

L0 .0)=0+2K,07.0)-K,VV ), (18)
the problem (10)-(11) can be written in the form

7o)} o

We suppose that (V o )T is the exact solution of

(19). Then by Taylor expansion of two variables,
A T

functions f, and f, at (V,(f)) sufficiently close to

(V Lo )T we have

53

0=1,0".¢")
/0 )+ Lo )

(20)

f1 N
PRy [(V sdr

:
o —@)%} £ + 0,5+ 0),
Where h =V "=V k =¢" —¢ and 6, €(0,1). And,
0=£,0"0)
1 DL )

21)

f2 N
T adNg —0) 5, [(V sdF7

2
—. . .
+(p —w)g} foV +60,h,0+0,k),

0;<(0,1).

We approximate above equations by eliminating
O(h*+k?):

o ~ . Of .
/, ,(p)i N)

o o [h]{
D2 ¢ ,4) %(Vlé») k

Hence the Newton's method for finding root of (19)
is

=l (V:(f’)}. )
_fz(V 5@)

9. 5f1
aV (Vnﬂgon) (Vnﬂ n) 5n+1
afz afz ynﬂ
V (Vnﬂgon) (Vnﬂ n) (23)
:[_fl(Vnﬂgon)] I’lIO,L,,,,
_fZ(Vn ’gon)
where
6n+1 ::VnH _Vn s ynH = gonﬂ _(pn' (24)

For starting numerical process it is sufficient to

evaluate elements of coefficient matrix,
9 9, =1,2.
ov ago
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Lo gw =limh ' [1,0” + )
A )] =limh” [+ hu

KW o)V K0 9)]
—u——(V o,

where
S ou = limh [K, 0 +hu.)
K0 )] =timh e[ [ G660
ho(t),s (7)+ ho (o)t —)p(e)d
' GeO+ho. e |
~¢|[[G GO @1 -Dp@x
o Geo.Lon@a |

~¢ (@) lim 220

=g @) [.[6. cO.s @ ~0)p(o)
o) +G,(s().s () ~T)p(D)o(r) Jd T
+oO]' G, (060" ()L

=& @O)|[,6. 60,8001 =)
[0()~o@)]o(e)dz

+oO] G, (0.6 g,

where

o) =[uyr,
a(t)=[ G(s@).s(2)t ~T)p(r)d T

G060 ()8,
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Aa(t) = I;G(s &)+ho(t),s(t)+ho(r),

(-Dp@dt+ | G(s@)+ho(t).£.1)

u’(&)dé —al(t),
and note that
G, +G§)(x,§,t)=0. (25)

Similarly we obtain
0 oK
T om= —a—l(V o,

afZ(V P I(V )u— 0 o

afZ(V oy +2—(V o

_ 2
a(p V.ou,
where

C ol =g @O GO, (0 ~Du(eMz,
@

TR o =2] G 6O ()t~ (oM
(0@)-o(@Ndr+20()[ G, ()" EME,
CL0 on =2 GO ek
Substitution above results in (23) gives
5,,0)+2" O], 5, (e)z

+[6,,(0)g, "t oM T (26)
[ 7 @g e =),

7 ©+2 O 5, ()T

+[6,, (g .t T @7)

+J.O ynﬂ (T)gb[n](f,fﬂf = rz[n](t)a

where

54
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g"(0)=g (@, G, (s,).60u"EME,

g."(t,7) =g (@, )], G, (5, ()5, (0t =7)
o, (r)dr,

g"(t.,1) =g (@, )G (s, ()5, ()t =),
MO =—0,.0,), i =12,

g0 =] [2¢'@,0)G, (5,0).5.0)

“2G., (5, (0),&,0) Ju (EM &,

g0 = [ [22 (@, )G, (s, )5, (), =7)
G, (s, ()5, (Dt =7) ], (2)d,

gt 1) =2g (,()G(s,),s, (7).t =7)

=2G (s, (1),s, (7).t = 7).

Equations (26)-(27) yield the following linear system
U[n+1] (t) — F[n](t)

‘ (28)
H K@U @,
where
S,(t)
U["] — n ,
“© Ln(r)}
ey | @O
F™(r) LG(t)},
[n] — _g1[n](t)_g2[n](ta‘[) _g3[n](ta‘[)
K (I’T) [_g4[n](t)_g5[n](ta‘[) _ga[n](ta'[) '

2.1. Convergence of Newton’s Method

In this Subsection convergence of Newton's method
will be proved. We can rewrite (10)-(11) as an operator
equation on Banach space U (see beginning of Section
2):

o ]-[5)

where T is defined by (16). For an arbitrary [I(;‘

(29)

}GU

and t € [O, a] it can be shown that:

55

hat
T[(p]U—w,

rl =[] o=

o,
W(V -P)

of,
W(V .0) vy

) (30)
%}(V -9)

I ¢
o V) !

Vi-g'(@)p
= @),
2g' () +0

where

a=al ,pit):=
[5G s ().t ~Pp(r)d T
oG s@nen@ae,
B=pBV .oV .¢;:t)=
J0G« (5 0).5 (D)t =D)p(e)(s, () =5, ())d T
81O, G (s(,E.0u"(E)d
Hy G s (.5 (0.0 ~D)py (D) 7.
Since Gy =G z,Gyx =G, so we can write
0=00 .0V, 0;t)=
200G o (5(0).5 (0.1 = D)), () =5, (1)) T
25,()] G ST),ET W (§)d &
R2[ G, (s(t).5 (0).t — 1)y () 7,
where
s@)=[ @)z, 5,) =V, ().
Now we prove that for every
v -
Hol=(
K2Rk ®

there exist L™ >0 such that:

(1)

*
<L

1)

|

U
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4

(p*
Vi’

. Suppose that for every , eU we define
o] Lo

where N is a neighborhood of exact solution

*

Vv

@

(32)

eU and =1,
? P

For arbitrary

it is sufficient show that,

oL

For ¢ €[0,0] denote o =a(V ,p;t),

<L

U

L (33)

U

B=BV .oV 0:0), 0=00 .0V ,01),

a'=ale\t), B'=BV "0V .00)
and

0'=0",¢'V,,@;t).
So we can write

. 1| _[¢@)B'-g'@)p HV”]

91| 28" (@B+0-2g"(a)B' 0"} [

We define the norm

Pl =mos 0001

(35)

¢l = max {[@[k :£°€[0,01}, (36)

Since g is bounded and Lipschitz continuous, these
means

3C, >0|g'(x )|cg, Vx €[0,%), (37)

EILg, >0 Vxy €[0,0)
(38)
Ig'(x)—g'(y)léLg'lx -y,

and hence,
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V| =lg"@"B'~g'(@)B| =

lg' (@B~ B)+(g'(@)~g'(@)h| (39)
ng,|ﬂ'—ﬂ|+Lg,|a'—a||ﬁ|.
Now we evaluate some upper bounds for

|B'- Bl.|a’ - a|. By the mean value theorem and noting

that for all 7>0 we have e 1 <lne ' <1 and

) 1
=< -
ne SE,
V=r'
B-pl<cio] | (40)
=9 \u
where
Ci)= U;+2J§e‘5/4 ||u°||} +F. (41)
8 er
V V'
|a'—a|£C2(t){ 1— , (42)
el 19y
where
Jr [t V2t o
c2(1)=7+,/ﬂ||¢||6 +7“ u H (43)
and the last term is
V V'
|9—6"|SC3(1){ 1— (44)
@ @ ey
where
2
C,(t) = JE+JZ||¢||G +Jﬂu°” (45)
By (39),(40) and (42)
Ve 0,67 = max ] €100}
V V'
el [
o] ¢y
where Similar

C,(0) =Cg,C1(t)+Lg,C2(t)|ﬁ|.

evaluation lead

max {|¢ﬁ | 't e [o,a]}

L

ol =

<Vo[2C 4(0)+C5(0)]

L |
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By introduce L~ in the blow form (33) holds.

L'=L'(0)=
(46)
Max {C,(0), Vo [20,(0)+C, ()]

Thus hypothesis of following theorem is satisfy.
Theorem 2. Let X and ¥ be two Banach spaces, and
operator T : X —Y be Frechet differentiable. Assume

x " isaroot of T (x)=0 such that [T'(x >l:)]’1 exists and
is a continuous linear map from X to Y . Assume
further that 7''(x) is locally Lipschitz continuous at
x=x,
’ ’ *
I'ec)-T'G)sLfx -»| Yx,p eN@), (@7
where N (x >I:) is a neighborhood of x~ and L >0 is a

constant. Then there exists a & >0 such that if

*
X\ —X
0

<&, the Newton's sequence {x, | is well-

defined and converges to x . Furthermore, for some
constant M we have the following error bounds

e n=x =Ml 7] @)
M5y
L é

Proof. see [1] pages 155, 156.

3. Product Integration Method

In Eq. (28) g, and g, are weakly singular kernels
in the following form

g3 (t,T)zp(t,T)g7(t,T), (50)
where
p(t.T)= tiT , (51)
2
—(s@)-s(T
g7 (t,T)::ﬁg'(a(t))exp (S:zt)—;g)) . (52)
gs(t.T)=p(t.T)gs(t.T), (53)
40,0 = (28 ) -2
(54)

coxpl “EO=s@)’
At -1) '

57

Now we want to solve the weakly singular integral
equation (28) by the method is described in [§].

This method allows us to overcome the difficulty
caused by the poor behavior of the solution U (¢) at the

initial point ¢ =0.
Given a relatively short interval [0,b] we first solve
the problem

Ut)=F()

(55)

+j;K(t,r)U(r)dr t €[0,b],

by a Nystrom- type'method based upon a whole interval
product integration rule of interpolation type, with
integrates exactly the kernel p(¢,7). After the initial

interval, the bad behavior of the derivative of U is of
less significance. We then solve the problem

U@=U,@)+],k@TYUT) dT t €[b,»), (56)
with

Ut)=F@)+[2k(,7)U (x) dz, (57)

by a standard step-by-step method for regular solutions.
Since the computation of U, (t) depends on the starting

approximation of U(t) , ¢ €[0,b], the two methods

have to be regarded as paired .
Now we describe the Nystrom-type method used to
solve equation (55) numerically. We can rewrite (55) as:

Ut)=F@)+[o{[K:s@)+K,(t,0)] 8(r)

+p(t, 1)K, 1)y (r)} dt t €[0,b], (58)
where
o=
o2
o)
Having chosen N +1 distinct points {z,}" in the

interval [0,b] we collocate the equation (58) at the
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nodes {r,}" -

Ult,)=F )+ K4 (t,) +K,(t,.0)]5()

+p(t,, DK, D)y (T)dT

(59)

where n=0,1,2,...N . Thus we use the Lagrange
interpolation polynomial.

L= % 1y ,0F @) (60)

to approximate and obtain

5(0),K5(ty,7)y(7)

following method:

Uy =F(tn)+f(t)n {[K;@,)+K4(@,,7)] %0

N
lN,/ (T)5N,j +p(t, 57)/§OIN J (T)KS(I”,T)}/N’J, ydr,

or
U. =F S (0 + oS
N.,n — (tn)+-/§0(a)n)/ +wn)/.) N.J
(61)
ASENE)
+J§ow"’ij J n=012,..,N,
where
w’(lljl = k3(tn )Ié” IN,/‘ (T)dT, (62)
wygzj) =1y ky(@,,0)ly (D)7, (63)
w’fz = kS(tn ’t] )J'é”l p(tn 9T)ZN J (T)d 7, (64)
5N,]
UN,j = (65)
Tn.j

To construct the coefficients o, and @’ we use a

Mathematica software;” And we use for @)’ the Gau-

ssian integration. By solving the linear system (59) we
obtain U, (¢) as a Nystrom approximation for U (¢):

N
Uy =Ft)+ X (@ ()
j=0

(66)
+o@ )5, + jNgo @Oy,
where
o) =k, Ol ; (0, (67)
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0P ()= [k, .0y (t)dT, (68)
oD () =ks(t.t, W peo)iy (2. (69)

Now we are ready to give the convergence of
product integration method.

3.1. Convergence of Product Integration for Solving
System of Weakly Singular Integral Equations

In our convergence analysis we examine the linear
test equation:

Ut)y=F@)+[, pt,0)U(r)dr t€[0,T], (70)
where
5(t)} [n(t)]
U)= o F()= .
y(@) ()

And assume that the forcing function g € C[0,T ]
And p is defined by (51) then the test equation (70)
has a unique solution U €C[0,7 [xC[0,7] That may

be expected to have unbounded derivatives at the end

point t =0.
If, for a given mesh {tj }N , e apply the method of
j=

Section 3 to the test equation (70) and obtain as
approximate solution U, (#) the following Nystrom

interpolant:

UN(f)=F(f)+Zw,-(p;t)UN(f,), (71)

where

o,(pi) = [ p@,o)l, (D).

In order to examine the uniform convergence of the
approximate solution U, (¢) to the exact solution U (¢)

of (70) notice that.
UO-U, ) =Y0,(pi0)

<{U(t,)=Uy @t )} +1, (p.U 1) (72)

Where ¢, (p,U,t) is the local truncate error defined
by

tN(p,U,t)=I;p(t,T)U(‘[)dT—ij(p;t)U(tj.). (73)
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Hence we obtain

”U —Uy ||:>o < H(l —dy )_IHw "tN ||:>o

where A4, is the linear operator defined by

(74)

A4, X =C[0,TIxC[0,T]—>X,
ANU(t)=ia)j(p;t)U(tj), UeX,T €[0,T] (75)

First we investigate the convergence properties of
the underling product quadrature rule.

Lemma 1. Let {pl.}j_v:1 is a sequence of orthogonal

polynomials on [-1,1] with respect weight function

w(t),
polynomials

then {q, }jv:l is a sequence of orthogonal
on [a,b] with respect weight function

a(t) where.

b;a]), t elab],

g.(0)=p, (bi[r - (76)
—a

b+a

at) = w(ﬁ[r —T]), t €la,b]. (77)

Proof. The proof of this lemma is easy and refer that'the
reader verify it.

Theorem 3. Let {tj }N

j=
degree member of a set of polynomials that are
orthogonal on [0,7] with respect to the weight

. be the zeros of the (N +1) st-

function.

2t 2t {, 2t
ot)=u(—-1)2-=2)%(=)",
) M(T ) T) (T)
(78)
3 1
-l<a<—,>——.
2 F 2
Here u(t) is positive and continuous in [0,7] and

the modulus of continuity ¢ of wu satisfies

Iol(p(u,5)%<oo Let L, (U;t) denote the vector of

interpolating polynomial of degree <N that coincides
with the vector function U(t)=(5(),y(t)) at the

nodes {tj }j;o

with

. Then for every vector function U

59

1
U)()°eX =C[0,T]xC[0,T ],0 > -3 (not an
integer) there holds

lim [, (p.U1)], =0 (79)

In particular we have the bounds

v [|t —T|;,U,tj

Proof. Note that for all
U eX =Cl0,LIxCI0T LU (¢) = (e, ¢ 1, ¢))'

| O, = max { w], [ ] } (81)

And apply relations (14),(15) in theorem 1 of [8] in
the vector case. Apply Lemma 1 for balance of interval
of orthogonality. *'The bound (80) is an immediate
consequence of theorem 5 in [2]. o
Now we .investigate the behavior of the first term

||(1 —A4)"! ||w in the right hand side of (74).

=O{(N +1)?'Log (N +1)} (80)

©

Theorem 4. Let the operator 4, be defined as in (75)
and the nodes {tj }N

J=l

chosen as in theorem 3. Then for

all N sufficiently large, there exist a constant C >0
independent of N such that

|z -4y, <c. (82)
Proof. Conditions of lemmas 1,2 of [8] are satisfy and
hence by theorem 2 of [8] the result arrive.

Theorem 5. Let U be the exact solution of the equation
(70). Let U, be the approximate solution obtained by

discretizing the integral term of (70) by a product
quadrature rule of interpolatory type constructed on a

.. N N
set of distinct nodes {t , } . Ifthe nodes {t , } ~are the
J)j=1 J)j=1

zeros of the (N +1) st-degree member of a set of

polynomials the weight function (78) with

1 3 .
) <a,f <5 then U, converges uniformly to U.

to U

coincides with the one of the basic quadrature rule we
choose to approximate the integral term of (70).

The proof follows immediately from the estimate
(74) together with Theorems 3 and 4. The bound (80)
supply an estimate of the rate of convergence.

Moreover, the rate of convergence of U,
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4. Numerical Examples
Substituting v =e”'u, in u, =uyy —yu yields

vt =V xx » SImce

t t t
¢ :}/e}’u+e7 u, =e’ (yu +ut):vxx ,

hence we can put y =0. Now consider the following
test problem.

Up =Uyy —0<X <s(), (83)
Ok =5 = © (84)
X
u(x,0)=exp(ax). —o<x <0, a>0, (85)
g, o) =V @), (86)
where
g(t)=exp(—t)—a—el. (87)

It is not difficult to verify that for a >0 the
functions s(¢)—at,u(x,t)=exp(ax +a’t) are an exact
solution of test problem.

Without loss of generality we can suppose a=1-.
For this problem we can write (61) in the form of linear
system,

AX b A= ( ) R(2N+2)><(2N+2)
X,b ER(2N+2)><1’

For an arbitrary i, j €{1,2,...,/\. +1} we have
a, =1+, )| "1y, 4z

7 gt (T,

a, =g, )" Ly (dr

gl (T %

R SO

X[ plt, 0l (T,

Gy = 84Dy

+J‘0H gs (t[—I’T)lN,j—l (M,

Qioyarion s =1+ 8510t )

X[ p o)y, ()T

Qi i N +1,j+N +1 :gS(ti—I’tj—l)

<[ Pl Ol L @H T

X :(SN,O""JSN,N9}/N,0""97/N,N )T >

R A (WA (79 WA (8 )

Now we evaluate-the exact ¢ for the test problem

corresponding to « =1 . For this problem we have

u(x,t)=exp(x+1t),s(t)=-t,
(88)
u’ (x)= exp(x).

Substituting this values in (5) tends to

2\/;exp(x +t)=j; \/tl—'[ exp{_jzcttgz}

(S)

xp()d T +—= j { }dé. (89)

For x =s(¢) in (89) we have

zf__j { (r+§)}§

N

If we define

u@) :=%exp(—%), 91)

Then we can write
(u*)t) =1 (Helf (QJ (92)

Now we take Laplace transform from (92) and obtain

L{p@t))= {1+\/1 s |. (93)

exp{‘(’;’)}w(r)dr. (90)

And hence we obtain the exact ¢ for our problem

go(t):%{1+ 2\8/;/4 +erf (IJ} (94)
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4.1. Discussion and Conclusion

In the test problem we set b =0.01,N =3. The
nodal points are zeros of

qe(t)=1-72b""t +1260b °t* —9240b ¢’

+34650b*t* —72072b 1> +84084b ¢

—51480b"¢7 +128706 %,

where {g,}”
t €[0,b]. Suppose y(.) :\[go(.) then y is continuous

=0

[3] and (94) yield

l//(t)=§{1+elf (\ﬁ

2

Tablel. Crude data

are orthogonal with respect w(t) =1 on

2e—t/4

i V@)=V @)l lw () -y(t,)
1 0.001 0.000858958
2 0.001 0.000717929
3 0.001 0.000576911
4 0.001 0.000435904
5 0.001 0.00029491

6 0.001 0.000153927
7 0.001 0:0000129561
8 0.001 0.000128003
9 0.001 0.000268951
10 0.001 0.000409887

Table 2. Data after one step.of Newton's'method

i V@)=V ()] lw(t) -y ()

1 2.15257x10° 9.29878x10°¢
2 2.96036x10° 0.0000131859
3 3.57996x10° 0.0000161803
4 4.11035%10°° 0.0000186981
5 4.58619x10°° 0.000020923

6 5.01559x10° 0.0000229382
7 5.41556x10° 0.0000247808
8 5.79135x10° 0.0000264993
9 6.14684x10° 0.0000281118
10 6.48531x10° 0.0000296337
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For this problem the exact value of V' is V (t)=1.
Now with initial guess

1 1
t)=—=+—A/t +0.001, 96
Wo() = (96)

V,(@)=-1-0.001, 97

the absolute errors of the solutions using original data at
points ¢, =0.001i,i =1,2,...,10 are given in Table I.

Table 2 gives the same quantities using ¥ and  1-
step approximated values of /' and y respectively.

First of all Table 1 shows the precision of the method
is considerable so it can be applied to many practical
problems. Secondly we show in Table 2 that further
improvements in precision are possible by using better
approximate. values for ¥ and w . Therefore this

method can be applied to wide range of problems in
different applications.
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