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Abstract 
In this paper Mathematical structure of time-dependent Lagrangian systems 

and their symmetries are extended and the explicit relation between constants of 
motion and infinitesimal symmetries of  time-dependent Lagrangian systems are 
considered. Starting point is time-independent Lagrangian systems ,then we 
extend mathematical concepts of these systems such as equivalent lagrangian 
systems to the case  of time-dependent Lagrangian systems. Also some new 
theorems and corollaries will be proved. Finally we make a 1-1 correspondence 
between the symmetries of equivalent time-dependent lagrangian systems and 
constants of motion by the new geometric concept of Galilean space-time. 
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Introduction 
Lagrangian and Hamiltonian are of foundamental 

concepts in classical mechanics and there are many 
researches about them[1]. Noether’s  theorem shows 
that the infintisimal symmetries of Lagrangian systems 
and constants of motion (conservsd quantity) are related 
to each other[1]. For example, conservation of the linear 
and angular momenta are due to the symmetries, 
translations and rotations of the space, and energy 
conservation is due to the timereversal symmetry. 
Symmetries can be used to decrease the number of 
degrees of freedom of systems. Newton, in 1687 was 
the first who find symmetry in solution of Kepler 
problem. 

The Mathematictions have worked on these subjects 
from geometrical view and  have gotten  some theorems 

about the relation between the symmetries and the 
constants of motion of  a Lagrangian system. 

In preliminary section we review some basic 
concepts and notations. 

The second and third sections contain some standard 
definitions and theorems that are brought in references 
completely. The concept of equivalent Lagrangian 
systems in section 2 is new and useful to extend some 
concepts in later sections. 

In section 4 it seems we need a suitable structure for 
classical mechanics, named Galilean space-time. Some 
physical concepts are rewritten in this frame work. 

Result section contains some new relations between 
the symmetries of Lagrangian systems and constants of 
motion in time-dependent Lagrangian systems using the 
concept of equivalent Lagrangian systems. 
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Preliminary 

In this paper, M  is a real C ¥  manifold and ( , )x U  
is  a  coordinates  system  on  M . ( , )x U  induces a 
coordinates system on TM  which is denoted by 
( , , )i ix x TU& . If :TM Mp ®  be  theprojection  map  ,  
then =i ix x po  , =i ix dx& .The set of vector fields 
on M is denoted by ( )X M . 

Any C ¥  function :L TM IR®  is called a 
Lagrangian on M .  

A hamiltonian system is a triple ( , , )M Hw  in which 
( , )M w  is a symplectic manifold and ( )H C M¥Î . For 
any function ( )f C M¥Î , it’s associated vector field, 
denoted by fX , satisfies the following equation: 

( , ) = ( ), ( )fX Y Y f Y X Mw " Î  

Integral curves of HX  are called motions of the 
Hamiltonian system ( , , )M Hw . A function 

( )f C M¥Î  is called a constant of motion, if f  is 
constant on the motions of the system, i.e. ( ) = 0HX f . 

A diffeomorphism :f M M®  is called a 
symmetry of the Hamiltonian system ( , , )M Hw  if 

* ( ) =f w w  and * ( ) = =f H H f Ho . 
The vector field ( )X MÎC  is called an 

infinitesimal symmetry of the Hamiltonian system 
( , , )M Hw  if = 0XL w  and ( ) = 0X H . 

It is well known that[9]: 
1) A vector field ( )X MÎC  whose flow is { }tj , is 

an infinitesimal symmetry of the Hamiltonian system 
( , , )M Hw  if  and only  if  each  tj  is a local symmetry 
of the hamiltonian system. 

2) A vector field ( )Z MÎC  is an infinitesimal 
symmetry of a Hamiltonian system ( , , )M Hw  if and 
only if for some constant of motion f , = fZ X  
locally. 

3) If The vector field ( )Y MÎC  is an infinitesimal 
symmetry of the Hamiltonian system ( , , )M Hw , then 
[ , ] = 0HY X . 

For any , pu v T MÎ , vertical lift of v  at u  is 
denoted by uI v  and is defined as follows[8]: 

=0= | ( ) ( )u t u
dv u tv VTM
dt

Á + Î  

There is a natural vertical vector field on TM that is 
defined as follows: 

= ,v vv v TMD Á " Î  

D  is called Liouville vector field of TM . There 
exists a canonical 1 1-  form  on  TM  which is called 
liouville 1 1-  form of TM . This form is denoted by J  
and defined as follows: 

*( ) = ( ),u uJ T TMpÁ " Îv v v  

In coordinates systems the 1 1-  form J , and 
Liouville vector field D  have the following 
representations: 

= , =i i
i ix J dx

x x
¶ ¶

D Ä
¶ ¶

&
& &

 

Any 1- form 1 ( )A Ma Î  can  be  considered   as  a  
function on TM , therefore the following hold: 

*= ( ) , ( ) =d Ja p a a aDo  

A vector field ( )TMÎCX  is called a semi-spray if 
its integral curves be in the form of a¢  for some curve 
a  in M . By abuse of language, we call a  an integral 
curve of X . The following propositions are equivalent: 

i) X  is a semi-spray. 
ii) for each v TMÎ , *( ) =v vp X  
iii) In any coordinates system we have: 

= i i
i ix g

x x
¶ ¶

+
¶ ¶

X &
&

 

iv) ( ) =J DX . 
If ( )X MÎC  be a vector field on M , it’s complete 

lift , denoted by cX ,  is a vector field on TM .   If the 
flow of X  be { }

t
f , then by definition the flow of cX  

is *{ }
t
f . If a  be a 1- form  on M , considering a  as 

a function on TM , ( )cX a  is equal to XL a . 

Time-Independent Lagrangians Systems 

Let :L TM IR®  be  a  Lagrangian  ( ( )L C TM¥Î
).The 1- form LQ  on TM , associated to L , is defined 
by =L dL JQ o . The reprsentation of LQ  in 

coordinates system is = i
L i

L dx
x
¶

Q
¶ &

. Lw  is defined as 

=L Ldw - Q . If Lw  be a nondegenerate 2-form, 
( , )LTM w  is a symplectic manifold .In this case L  is 
called a regular Lagrangian. So L  is regular if and only 

if, in coordinates systems, 
2

( ( ))i j

L v
x x
¶

¶ ¶& &
 be  an  

invertible matrix at every v TMÎ .  Also  an  energy  
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function LH  on TM can be defined by the following 
relation: 

= ( ) = i
L i

LH L L x L
x
¶

D - -
¶

&
&

. 

If L  be a regular Lagrangian, then the triple 
( , , )L LTM Hw  is a Hamiltonian system and it is called 
the Hamiltonian system associated to L . Let LX  be 
the associated vector field to LH  on TM ,then   it   is  
well known that LX  is a semi-spray and its integral 
curves on M  are exactly the critical paths of L [9]. In 
other words, a curve a  on M  is  an  integral  curve  of  

LX  if  and  only  if  a  satisfies Euler-Largrange 
equations. 

The motions of the Hamiltonian system 
( , , )L LTM Hw , are also called the motions of the 
Lagrangian system ( , )M L . 

Two different Lagrangians may produce the same 
dynamical  systems,  so  we  need  to  know  in  what  
conditions, two Lagrangian define the same dynamical 
systems[1]. 
 
Definition 1. Two regular lagrangian , :L L TM IR¢ ®  
are called equivalent, if =L Lw w ¢  and =L LH H ¢ . 
 
Theorem 1. Two lagrangians , :L L TM IR¢ ®  are 
equivalent if and only if L L ¢-  is  a  closed  1-form on 
M . 

Symmetries of Lagrangian Systems 

Definition 2. A diffeomorphism :f M M®  is called 
a symmetry in a Lagrangian system ( , )M L ,   if  L and 

*L fo  be equivalent. 
Theorem 2. Let ( , )M L  be a Lagrangian system, then a 
diffeomorphism :f M M®  is a symmetry of ( , )M L  
if and only if * :f TM TM®  be  a  symmetry  of  
( , , )L LTM Hw . 
Definition 3. In a Lagrangian system ( , )M L , a vector 
field ( )Y MÎC  whose flow is { }tf , is called an 
infinitesimal symmetry if for every t , tf  is a local 
symmetry of the system. 
 
Corollary 1. A vector field ( )Y MÎC  is  an  
infinitesimal symmetry of a Lagrangian system ( , )M L  
if and only if cY  is an infinitesimal symmetry of the 
Hamiltonian system ( , , )L LTM Hw . 

Theorem 3. A vector field ( )Y MÎC  is  an  
infinitesimal symmetry of a Lagrangian system ( , )M L  
if and only if the function ( )cY L  on TM  be a closed 
1- form on M . 

Constants of Motion 

 
Theorem 4. If ( , )M L  be  a  Lagrangian  system,  and  

= ( ), ( )c
Y Lf Y Y X MQ Î ,then ( ) = ( )c

L YX f Y L . 
Proof. Note   if  :L TM IR® be a regular Lagrangian, 
then ( ) =X LL

L dLQ , and if ( )h C M¥Î ,  ( )D TMÎC   

be respectively a function and a semi-spray,then 
( ) =D h dhpo . A simple local computation shows that 

[ , ]cD Y  is vertical. 

( ) = ( ( )) = ( ( )c c
L Y L L X LL

X f X Y L YQ Q +  

          
([ , ]) = ( ) ( ([ , ]))

= ( ) (0) = ( )

c c c
L L L

c c

X Y dL Y dL J X Y

Y L dL Y L

Q +

+
 

■ 
 
Theorem 5. If ( )Y MÎC  be an infinitesimal symmetry 
of a Lagrangian system ( , )M L  and   g  be a local 
function that ( ) =cY L dg , then the function 

=Y YC f g p- o  is a constant of motion. 
 
Proof. 

( ) = ( ) = ( ) ( )L Y L Y L Y LX C X f g X f X gp p- -o o  

= ( ) = = 0cY L dg dg dg- -  

If L ¢  , L   be equivalent Lagrangians, then there is a 
closed1- form a  ,which =L L a¢ + . So the following 
holds: 

*= = ( )L LdL J d Ja p a¢Q + Q +o o .  

If  h  be a  local  function ,which = dha , then 

( ) = ( ) ( ) = ( ) ( )c c c c
YY L Y L Y dh Y L L dh¢ + +  

  = ( ) = ( ( ))Ydg d L h d g Y h+ +  

With approximation of a constant, we can choose 
= ( )g g Y h¢ +  ,which ( ) =cY L dg¢ ¢ . Now, the constant 

of  motion related to L ¢  is 'YC and is infered from the 
following computations: 
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*= ( ) = ( ( ))( )c c
Y L LC Y g Yp p a¢ ¢ ¢Q - Q + -o

           *( ( )) ( ) ( )( )c c
Lg Y h Y Yp p a+ = Q + -o  

            
( ) = ( )

( ) = ( ) ( )

Y

Y

g Y h C Y

Y h C dh Y Y h

p p a p

p p p

- + -

+ -

o o o

o o o

 

         = ( ) ( ) =Y YC Y h Y h Cp p+ -o o  

■ 
In above theorem, the function YC  is called constant 

of motion associated to the symmetry Y . 
Theorem 6. If ( )Y MÎC  be an infinitesimal symmetry 
of the Lagrangian system ( , )M L , then CY

X  equals 
cY  in  the associated Hamiltonian system 

( , , )L LTM Hw . 
Corollary 2. If f  be  a  constant  of  motion  of  the  
Lagrangian system ( , )M L , in which = c

fX Y for 
some ( ),Y X MÎ  then Y  is an infinitesimal symmetry 
of ( , )M L  and =YC f . 
Example: Let nM IR= and  

1 1
1( , ) ,i i j j

j
L x x x x x x Y

x
¶

= + =
¶å& & & &  

Then 1
cY

x
¶

=
¶

 and 1 1( )cY L x dx= =& . Since  

1 1 1

1
( 2 ) 2 j j

L
j

x x dx x dx
<

Q = + + å& &  

And 1 1( ) 2c
L Y x xQ = + & , then we find 

1 1 1 12 2YC x x x x= + - =& &  is a constant of the motions 
hn the system ( , )nIR L  

Time-Dependent Lagrangian Systems 

To have a good framework for discussing about 
time-dependent Lagrangian systems, we need to define 
a suitable mathematical structure, named  Galilean 
space-time. 
Definition 4. A fiber bundle : E IRp ®  with  a  
standard fiber M  is called a Galilean space-time. For 
any t IRÎ , 1= ( )tM tp -  is called space at time t . 
Definition 5. Every section of a Galilean space-time 

: E IRp ®  is called a motion of system. 
In this section : E IRp ®  is a fixed Galilean space-

time. 
Definition 6. If :S IR E®  be a motion, then ( )S t¢  is 
called the world velocity of S  at time t . 

Clearly, ( ( )) = 1d S tp ¢  and all world velocities of 
particles lies in a submanifold of TE  which will be 
defined later. Since IR  is contractible, every Galilean 
space-time is isomorphic to the trivial bundle 

1pr

IR M IR´ ® . 
Definition 7. Every bundle isomorphism 

1
h

E IR M
pr

IR IR

f

p
® ´

¯ ¯

®

 

in which h  has the form 0( ) =h t t t+ , is called an 
observer of the Galilean space-time : E IRp ® . 

An observer sees all spaces tM  like M  ,  i.e  if  
:S IR E®  be  a  motion  of  a  particle,  then  for  any  

observer f  there exists some curve : IR Ma ®  such 
that ( ( )) = ( ( ), ( ( )))S t h t h tf a . a  is called the motion 
of the particle relative to the observer f , and a¢  is 
called velocity of the particle relative to the observer f . 
There exists a unique vector field ( )X Ef ÎC  that is 

f - related to 
t
¶
¶

 and  is  called  the  vector  field  of  the  

observer f . 

The 1-jet bundle of the Galilean space-time E IR
p
®  

can be described as the following: 

1 = { | ( ) = 1}J E v TE d vpÎ  

1 ( )J E  is an affine subbundle of the bundle 
:E TE Ep ® , modeled on the vertical subbundle VE . 

Since the world velocities of all particles lies in 1J E , 
then we need the restriction of Ep  to 1J E ,that  denote 
by 1

1 : J E Ep ® . 
Definition 8. A vector field 1( )J EÎCX  is called a 
time-dependent  semi-pray, if it’s integral curves be in 
the form of a¢  in which a  is a motion of E . 

Time-dependent semi-sprays are similar to ordinary 
semi-sprays . 1( )J EÎCX  is time-dependent semi-spray 
if and only if 1* ( ) =v vp X  for any 1v J EÎ . 
Definition 9. In a Galilean space-time : E IRp ® , 
every smooth function 1:L J E IR®  is called a 
Lagrangian on E . 

Let : E IR Mf ® ´  be a trivialization of E  over 
an open set U  in M  (an  observer),then   f  equals a 
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pair of functions ( , )p y .Set 1= ( )U Uy -¢ , =t p  and 
=i ix x y¢ o . Therefore ( , )ix t¢  is a bundle chart on E  

as the following: 

( )U x U IR¢ ® ´  

( ( ), ( ))xx y x p xa o  

This bundle chart  induces a bundle chart on TE  
that  is restrictable to 1J E . The component functions of 
the induced bundle chart on 1J E  are the followings: 

1 1

1 1 *

= = ,

= = , = =

i i i

i i i

x x x

t t x dx dx

p y p

p p p y

¢

¢

o o o

&o o o

 

Note that the functions t  and t  do not depend on 
( , )x U  and f . 

For Ex Î  and 1( )u J E xÎ  and ( )v VE xÎ , the 

vertical lift of v  at u  is a vertical vector in 1T J Ex  , 
denoted by uvÁ , is defined as follows : 

=0= | ( )u t
dv u tv
dt

Á +  

Note that for any 1ˆ ( )uw T J EÎ , the vector 

1* ˆ ˆ( ) ( )w dt w up -  lies  in  VE  ,so we can construct it’s 
vertical lift at u .  This  is  a  bundle  map  on  1TJ E  , 
denoted by n ,and is called the Liouville 1 1- form of 

1J E  and is defined as follows: 

1 1

1
1*

:
ˆ ˆ ˆ( ) ( ( ) ( ) )u u

TJ E TJ E
w T J E w dt w u

n
p

®
Î Á -a

 

n  has the following representation in bundle chart[5]: 

= ( )i i
idx x dt

x
n ¶

- Ä
¶

&
&

 

Let L  be a Lagrangian on E , a 1- form on 1J E , 
denoted by LQ ,  is constructed in [5] as follows: 

=L dL LdtnQ +o  

LQ  has the following form bundle chart: 

= ( )i i
L i i

L Ldx x L dt
x x
¶ ¶

Q - -
¶ ¶

&
& &

 

An observer can show the relations between time- 
dependent and time-independent Lagrangian systems. In 
this case we may assume E  is the trivial bundle , so 

1 =J E IR TM´ .For a Lagrangian 1:L J E IR® , by 

fixing t , we can define the time-independent 
Lagrangian :tL TM IR® . The associated energy 
function af tL  is = ( )L t tt

H L LD - . Now LQ  as a 1-

form on IR M´  can be written as follows: 

=L t Lt
dL J H dtQ -o  

Critical paths of a time-dependent Lagrangians are 
defined similar to the case time-independent 
Lagrangians and for these paths Euler-Lagrange 
equations must  hold. 

The 2- form =L Ldw - Q  can  be  used  to  describe  
the critical paths of L . Since dimension of 1J E  is odd, 

Lw  is degenerate and we can not construct a 
Hamiltonan system. 
Definition 10. A Lagrangian 1:L J E IR®  is called 
regular, if Lw  has maximum rank. 

For a regular Lagrangians L , kernel of ( )L uw  is a 
one dimensional subspace of 1( )uT J E , at any 1u J EÎ , 
so there exists a unique vector field 1( )LX J EÎC  such 
that 

= 0 , ( ) = 1X L LL
i dt Xw  

LX  is  a  semi  spray  and the  integral  curves  of  LX  
are exactly the critical paths of the Lagrangian L [5]. 
The integral curves of semi-spray LX  are called 
motions of the system ( , )E L . A C ¥  function 

1:f J E IR®  is called a constant of motion of the 
Lagrangian system ( , )E L , if for any motion a  of this 
system f a¢o  be constant,  i.e. = 0LX f . 

A 1- form on E  can be considered as a function on 
TE , so we can consider it’s restriction to 1J E . A 1-
form on E , completely is determined by it’s restriction 
to 1J E . A function on 1J E  is called a 1- form on E , 
if it is the restriction of a 1- form of E  to 1J E . 
Example:(Kapitza pendulum). Consider the pendulum 
suspended from a rotating disk. The disk has diameter d 
and the pendulum has length _. At the end of the 
pendulum there is a mass m. The rotation of the disk is 
forced to be at constant angular speed θ(t) = ωt. φ is the 
angle of the pendulum relative to the vertical. 
 

 

q
j
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In this case the Lagrangian is time-dependent and 
1E S= ´¡ . We can find the Lagrangian of the system 

with respect to f  that represent a coordinates system on S1 

1 1

( , , ) ( , , )

J E IR TS IR

t L tf f f f

= ´ ®

& &a

 

The x and y position of the mass is 
sin sin , cos cosx d t l y d t lw f w f= + = +  

so the velocity of the mass is 

cos cos

sin sin

x d t l

y d t l

w w f f

w w f f

= +

= - -

&&

&&

 

so the kinetic energy of the pendulum is 

2 2

2 2 2 2

1 ( )
2

( 2 cos( ))
2

m x y

m d l dl tw f wf w f

+ =

+ + -

& &

& &

 

Therefore  the Lagrangian is  

2 2 2 2( 2 cos( ))
2
mL d l dl tw f wf w f= + + -& &  

        ( cos cos )mg d t lw f+  

Definition 11. Two Lagrangians 1, :L L J E IR¢ ®  are 
called equivalent, if =L Lw w ¢  . 
Theorem 7. Two lagrangians 1, :L L J E IR¢ ®  are 
equivalent if and only if L L ¢-  is a closed 1- form on E. 
Proof. Without loss of generelity assume E  is trivial. 
First suppose L  and L ¢  are equivalent, i.e =L Lw w ¢ . 
Set =L L h¢ + , so 

= =L t L L t ht t
dL J H dt dh J H dt¢ ¢¢Q - Q + -o o  

Since =L Lw w ¢ , then t ht
dh J H dt-o  is a closed 1-

form on IR TM´  that in bundle chart has the 
following representation: 

( )i it t
ti i

h hdx x h dt
x x
¶ ¶

- -
¶ ¶

&
& &

 

Since the exterior differential of this form is zero, 
then 

2 2 2

2 2

= 0, = = 0( )

, = 0

t t t
i j i j j i

jt t t
i j i i

h h h
i j

x x x x x x

h h hx
x t x x x

¶ ¶ ¶
¹

¶ ¶ ¶ ¶ ¶ ¶

¶ ¶ ¶
+ -

¶ ¶ ¶ ¶ ¶

& & & &

&
& &

 

From  the  first  equation  it  is  infered  that  
= .i i

t t th h x gp p+&o o , in which , i
t tg h  are local 

functions on M .The second equation yields 

=
i j
t t

j i

h h
x x
¶ ¶
¶ ¶

. So, the local 1- form i i
th dxå  on M  is 

closed  form and  equals tdf  for some local function tf  

on M  i.e =i t
t

i

f
h

x
¶
¶

. 

The result of third equation is 

( ) = 0j jj ji
i i i

h hh gx x
t x x x

¶ ¶¶ ¶
+ - +

¶ ¶ ¶ ¶
& &  

( ) = 0i

f g
tx

¶ ¶
Þ -

¶¶
 

= ( )t
f g k t
t

¶
Þ +

¶
 

If f be replaced by ( )tf k t- , then all equations 

hold  and =t
fg
t

¶
¶

 .Therefore 

= i
i

f fh x
tx

p p¶ ¶
+
¶¶

& o o  

This equation means that if f  be a function on 
IR M´ , then the restriction of 1- form df  on 

1 ( )J IR M´  is equal to h . So, L L ¢-  is a closed 1-
form locally and consequently L L ¢-  is  a  closed  1-
form on E . 

Conversely, let L L ¢-  be a closed 1- form on E . 
There exists a function f  on IR M´  such that 

=L L df¢ + locally. 
The above calculations show the condition =L Lw w ¢  

is equivalent to this fact that three above equations must 

hold for = i
t i

f fh x
tx

p p¶ ¶
+
¶¶

& o o . 

An easy computation shows that above three 
equations hold. ■ 

Results and Discussion 

Symmetries of Time-Dependent Lagrangian Systems 

Definition 12. If : E IRp ®  be a Galilean space-time, 
then a bundle map :f E E®  is called a Galilean 
transformation if f  be a diffeomorphism and it’s 
induced map on IR  be a translation. 

If f  be a Galilean transformation on E , then 1J E  

www.SID.ir



Arc
hi

ve
 o

f S
ID

The Symmetries of Equivalent Lagrangian Systems and Constants of Motion 

69 

is invariant under *f  and it’s restriction to 1J E  is 
denoted by 1J f . 
Definition 13. For a Lagrangian system ( , )E L , a 
Galilean transformation :f E E®  is called a 
symmetry if  L  and 1L J fo be equivalent. 
Theorem 8. A Galilean transformation :f E E®  is  a 
symmetry of ( , )E L  if and only if 1 *( ) =L LJ f w w . 
Proof. Without loss of generality we can assume 

=E IR M´ . In this case :f IR M IR M´ ® ´  has 
the form ( , ) = ( , ( ))tf t p t c g p+  and 

1 :J f IR TM IR TM´ ® ´  has the form 
1

*( , ) = ( , ( ))tJ f t v t g v . So 1 *( ) ( ) =J f dt dt  and 
1 * 1 *( ) ( ) = ( ) ( )L t Lt

J f J f dL J H dtQ -o            

                  1 1
*( ) ( )t Lt

dL J J f H J f dt= -o o o  

 
Since 1

*= tJ f g onTM , then
1 *

** *( ) ( ) =L t t L tt
J f dL J g H g dtQ -o o o  

The same computations as in the case time-
independent Lagrangian systems yield the follwing: 

1 *
* *

( ) ( ) = ( )L t t L gt t
J f d L g J H dtQ -

o
o o  

1=
L J f

Q
o

 

To prove the theorem, first assume that f  is  a  
symmetry of the the Lagrangin system. So 1=L L J f

w w
o

 

and consequently 

  1 * 1 *( ) ( ) = ( ) ( )L LJ f J f dw - Q  

                  

1 *

1

1

( ) ( )

= ( )

= =

L

L J f

LL J f

d J f

d

w w

= - Q

- Q
o

o

 

Conversely assume 1 *( ) ( ) =L LJ f w w . The last 
computation shows  

1 *
1= ( ) ( ) =L L L J f

J fw w w
o

 

So L  and 1L J fo  are equivalent  ■ 
For a Galilean space-time : E IRp ® , if { }tf  is the 

flow of a vector field ( )Y EÎC  then each tf  is a local 
bundle map on E ,  if  and  only  if  Y  is p - related to 
some vector field on IR . Each tf  is a local Galilean 
transformation if and only if for some IRlÎ , Y  is 

p - related to d
dt

l .  This  kind  of  vector  fields  are  

called infinitesimal Galilean transformations. For 
example, the vector fields of all observers are 
infinitesimal Galilean transformations, because all of 

them are p - related to d
dt

. If { }tf  be  the  flow  of  an  

infinitesimal Galilean transformation Y , then *{ }tf  is a 
flow on 1J E  and it's induced vector field is denoted by 

1J Y . Actually, 1J Y  is the restriction of cY  to 1J E . 

Symmetries and Constants of Motion 

Definition 14. Let Y  be an infinitesimal Galilean 
transformation of a Galilean space-time : E IRp ® . If 
the flow of Y  be { }tf , then Y  is called an 
infinitesimal symmetry of ( , )E L  if tf  be  a  local  
symmetry of ( , )E L  for every t IRÎ . 
Corollary 3. Y  is an infinitesimal symmetry of a 
Lagrangian system ( , )E L  if  and  only  if  1J Y  is an 
infinitesimal symmetry of 1( , )LJ E w , i.e. 1 = 0LJ Y

L w . 

Theorem 9. If Y  be an infinitesimal symmetry of the 
lagrangian system ( , )E L  then 1[ , ] = 0LJ Y X . 
Proof. Since 1J Y  is an infinitesimal symmetry of 

1( , )LJ E w , then  

1 1 1[ , ]

1[ , ]

0 = ( ) =

=

X L L X LJ Y J Y X J YL LL

LJ Y X L

L i i i L

i

w w w

w

+

 

So 1[ , ]LJ Y X  must be a multiple of LX .Since LX  

is t -related to d
dt

 and for some l , 1J Y  is t -related 

to d
dt

l ,then  1[ , ]LJ Y X  is t -related to zero. Since 

1[ , ] =L LJ Y X fX , then we conclude that = 0f  and 
1[ , ] = 0.LJ Y X ■ 

Theorem 10. Let Y  be an infinitesimal Galilean 
transformation of E . Y  is an infinitesimal symmetry 
of a Lagrangian system ( , )E L  if and only if 1( )J Y L  is 
a closed 1-form on E. 
Proof. The proof is completely the same as the time-
independent case. ■ 
Theorem 11. Let Y  be an infinitesimal Galilean 
transformation of Lagrangian system ( , )E L   and  set  

1= ( )Y Lf J YQ , then 1( ) = ( )L YX f J Y L . 

www.SID.ir
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Proof. Note that in this case, similar to the case of time- 
independent Lagrangian system, by the following 
computation  we have ( ) =X LL

L dLQ .  

( ) = = ( ( ))X L X L X L L LL L L
L di i d d XQ Q + Q Q -

       = ( ( ) ( )) =X L t L L LL t
i d dL J X H dt Xw -o  

  
( ( ) ) = ( ( ) ( ) ) =t L t tt

d dL H d L L L

dL

D - D -D +
 

Since the vector field 1[ , ]LJ Y X  is 1p -
vertical[5],then 

1 1

1 1 1

( ) = ( ( )) = ( )( )

([ , ]) = ( ) 0 = ( ).

L Y L L X LL

L L

X f X J Y L J Y

J Y X dL J Y J Y L

Q Q +

Q +
 

■ 
 
Theorem 12. If Y  be an infinitesimal symmetry of a 
Lagrangian system ( , )E L  and 1( ) =J Y L dg , then the 
function 1=Y YC g fp -o  is a constant of motion. 
Proof. Since LX  is a semi-spray of 1J E , then 

1( ) =LX g dgpo . Now 

1( ) = ( ) ( )L Y L L YX C X g X fp -o  
1= ( ) = = 0dg J Y L dg dg- - ■ 

If X f  be the vector field of an observer f , then 

XC
f

 is energy of the system relative to that observer. 

Moreover, if X f  be an infinitesimal symmetry of 
( , )M L , then the energy is constant and we can choose 
an time-independent equivalent Lagrangian L  relative 
to  observer f . 
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