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Abstract 

Considering generalized concurrence as the criterion of entanglement, we study 
entanglement properties of superposition of two qutrit coherent states, as a 
function of their amplitudes. These states may attain maximum entanglement or 
no entanglement at all, depending on the choice of the parameters involved. The 
states revealing maximum entanglement also display the maximum violations of 
the Bell-CHSH inequalities. 
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Introduction 
It is well known that entanglement is the cornerstone 

of several exciting non-classical phenomena including 
quantum computation, quantum teleportation and 
quantum cryptography [1-5]. Concurrence and its 
extension through the convex-roof method have been 
used to identify and measure the entanglement of two-
dimensional bipartite systems [6-8]. Recent investiga-
tions have revealed that systems with higher dimensions 
may have advantages as regards channel capacities, 
security of quantum cryptography, quantum gate 
superiority and more efficient quantum information 
protocols [9-11]. This has prompted several investiga-
tions regarding qutrits (3-dimmensional systems) and 
their realization and manipulations [12-19]. On the other 
hand, it is already known that entangled coherent states 
[20-25] have applications in the domain of decoherence 
[26], quantum computation [27], quantum teleportation 
[28,29], interferometeric studies [30] and the test of the 
quantum non-locality [31, 32]. 

The above developments provide us the motivation 
to study the entanglement properties of superposition of 

two qutrits described in their relative coherent states, as 
a function of their parameters. Entanglement of two 
qubit-coherent states has also been studied by Berrada et 
al. [33]. The organization of the rest of this paper is as 
follows. The coherent state of a qutrit is introduced first. 
Next, generalized concurrence (I-concurrence) and its 
properties are considered. Finally superposition of two 
qutrit coherent states, its entanglement properties and 
results and discussion are presented in the last section. 

Materials and Methods 

Qutrit Coherent States 

The Radcliffe spin coherent states are given by [34] 
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where ,j m+  are the eigenvectors of the angular 
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momentum operators 2J


 and zJ


 with eigenvalues 
equal to ( 1)j j + and m, respectively. For 1j =  we 
obtain 
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where 

1,0 0 , 1,1 1 , 1, 1 1 .= = − = −  (3) 

and 

tan( ),
2

ie φ θα =  (4) 

have been defined. 
An unnormalized entangled pure state of two 

coherent states may be given by 

cos ( ) sin ( )ie φψ θ α β θ α β′ ′ ′= ⊗ + ⊗ ; (5) 

defining ( 1 1 11 )⊗ =  and similar definitions for the 
other pair states and also substituting (2) in (5) we 
obtain 
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where we have introduced 
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2 22( ),h α βλ α β γ′ ′= +  

2 2 2 2 .I α β λ α β γ′ ′= +  (7) 

.N ψ ψ=  (8) 

I-Concurrence for a Pure Two-Qutrit System 

While concurrence has been extensively used as an 
entanglement measure in the case of bipartite qubit 
systems, I-concurrence has been introduced as an 
appropriate measure of entanglement in the case of 
higher dimensional systems including qutrits [35, 36]. 
For a pure state it is defined by 

( ) 22(1 ( ) ) ,rC trψ ρ= −  (9) 

where, rρ  represents the density matrix of one 
subsystem (A or B), derived from the bipartite density 
matrix ρ  by tracing out the other 

; .A B
B Atr trρ ρ ρ ρ= =  

Concurrence and I-concurrence match for the two 
level systems. The minimum for both measures is equal 
to zero, but the maximum value for the former is unity, 
while the latter can obtain a maximum value equal to 

2( 1)d
d
−  for d-dimensional systems. 

Results and Discussion 

Entanglement Properties of Two Qutrits 

The density matrix of our pure bipartite system may 
be expressed by 

ρ ψ ψ= ; 

thus 
3

1
( ) ( ) ,A

B A B j A B j
j

tr I Iρ ρ φ ρ φ
=

= = ⊗ ⊗∑  (10) 

where, AI  is the unit operator in the A-subspace and 
{ }B jφ  are the orthogonal bases in the B-subspace, 
whose matrix representations are given by 
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0 0 1
1 0 ; 0 1 ; 1 0 .

1 0 0

     
     − = = =     
     
     

 (11) 

Using (10) we obtain 

1 ,A

A B C
B D E

N
C E F

ρ ∗

∗ ∗

 
 =  
 
 

 (12) 

where we have defined 

; ,A aa bb cc B ad be cf∗ ∗ ∗ ∗ ∗ ∗= + + = + +  

; ,C ag bh cI D dd ee ff∗ ∗ ∗ ∗ ∗ ∗= + + = + +  

; .E dg eh fI F gg hh II∗ ∗ ∗ ∗ ∗ ∗= + + = + +  (13) 

We also find 
2

2 2 22 2 2
2

( )

1 [ 2 2 2 ].

Atr

A D F B C E
N

ρ =

+ + + + +
 (14) 

To simplify our calculations we assume that the 
coherent state parameters are real and also satisfy the 
following relations 

; .α α β β′ ′= − = −  (15) 

Now, substituting for (14) from (7), (13) and (15) we 
find 
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6 8 6 2 2 24 4 ) {( ) ( ) ( )α β α λ γ λ γ λ γ∗ ∗+ + + + − + −  

2 2 2 2 6 6 2 6 6( ) (8 8 8 8 )].λ γ α β α β α β α β∗ ∗× + + + +  (16) 

Considering equations (7), it is clear that (16) is a 
function of the parameters , ,α β θ andφ ; maximizing 

(16) with respect to the parameters θ  and φ  we obtain 

the sets [ , 0]
4
πθ φ= =  and [ , 0]

4
πθ φ=− = , 

independent of the parameters α  and β . For 

[ , 0]
4
πθ φ=− =  we find 
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+ + + +
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and 
14 4 4 8 4 4 8 4
2

2 2 2 4 4 2 2

( 4 )( ) [2(1 )] .
( )

C β α α β α β α βψ
β α α β α β
+ + + +

= −
+ + +

 (17) 

Maximizing (17) with respect toα as a running 
parameter, we obtain 

1 1; ; ; ,α β α β α α
β β

= = − = = −  (18) 

which correspond to the following states 

1
2 2( ) ( )

2 2
ψ α α α α= ⊗ − − ⊗ −  

2
2 2( ) ( )

2 2
ψ α α α α= ⊗ − − − ⊗ ; (19a) 

1 1
3

2 2( ) ( ( ) )
2 2

ψ α α α α− −= ⊗ − − ⊗ −  

1 1
4

2 2( ( ) ) ( )
2 2

ψ α α α α− −= ⊗ − − − ⊗  (19b) 

and the maximum I-concurrence, ( ) 1M iC ψ = , for 
1,  2,  3,  4i =  is obtained. 

We have presented a three-dimensional plot of 
( )C ψ  as a function of the coherent state parameters α  

and β  in Figure 1, using Mathematica. We have also 
displayed α  versus β  plots for the four equations in 
(18), which correspond to the maximum value of 
entanglement, in Figure 2. It is also observed that 

( ) 0C ψ =  for 0α =  and an arbitrary value of β , and 
vice versa; implying no entanglement at all. 

For the set [ , 0]
4
πθ φ= =  we find 

8 4 2 4 4 8
2

4 4 4 4 2 2 2

(1 )(1 ) 2 (1 10 )( ) ,
(1 4 )

Atr β α β α αρ
β α α β α β
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18 4 2 4 4 8
2

4 4 4 4 2 2 2
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(1 )(1 ) 2 (1 10 ))] .
(1 4 )
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β α β α α
β α α β α β

= −

+ + + + +
+ + + +

 (20) 

Again maximizing with respect to α  we find 
1 1
2 2( ) ; ( ) ,A B A Bα α′ ′ ′ ′= ± − = ± +  (21) 

where we have defined 

4 82

4 4

2 12 ; .
1 1

A B
β ββ

β β
− −

′ ′= =
+ +

 (22) 

 

 

Figure 1. Plot of )(ψC as a function of the  
coherent state parameters βα , . 

 
 

 

Figure 2. Plots of the equations 
β

α
1

±=  (dashed-dotted line) 

and βα ±=  (dotted lines), which correspond  
to maximum entanglement. 

Requiring real parameters, as we have assumed 
initially, the acceptable values for β  are 

1β = ±  (23a) 

leading to 

1α = ± . (23b) 

The corresponding entangled states are 

1
2 2( 1 1 ) ( 1 1 ),

2 2
ψ ′ = ⊗ + − ⊗ −  

2
2 2( 1 1 ) ( 1 1 )

2 2
ψ ′ = − ⊗ + ⊗ − , (24) 

which also lead to the maximum concurrence for both 
states 

1 2( ) ( ) 1.C Cψ ψ′ ′= =  (25) 

We note that equations (19a) at 1α = , along with 
equations (24), bring together a set of four Bell-like 
states; they not only display the maximum entanglement 
as we have shown in this work, but they also display the 
maximum violations of the Bell-CHSH inequalities, as 
has been demonstrated by Gerry et al. [37]. 

In summary, considering the superposition of qutrit 
spin coherent states, we have studied their entanglement 
properties as a function of their amplitudes, using I-
concurrence as the measure of entanglement. It is 
observed that choosing appropriate parameter values, as 
expressed by equations (18) and (23), renders this 
system to attain maximum entanglement; while, for 

0α =  and arbitrary β  or 0β =  and arbitrary α  no 
entanglement is observed at all. Moreover, we 
introduced a set of four qutrit Bell-like states, as 
expressed by equations (19a) for 1α =  and (24) that not 
only display the maximum entanglement, but also show 
the maximum violations of the Bell-CHSH inequalities. 

Our investigations in this work are limited to real 
and specific values of the coherence parameters and 
only three dimensional systems (qutrits) have been 
considered. Investigations along these lines, but with 
arbitrary values of the coherence parameters, including 
complex ones, and also considering higher dimensional 
systems could be pursued in the future. 
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