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Abstract 

The problem of estimating the parameter θ, when it is restricted to an interval 
of the form [ ,1]m , in a class of discrete distributions, including Binomial ( , ),k θ  
Negative Binomial ( , ),r θ  discrete Weibull ( )θ  and etc., is considered. We give 
necessary and sufficient conditions for which the Bayes estimator of ,θ  with 
respect to a two points boundary supported prior is minimax under squared log 
error loss function. For some of the distributions in this class, we give numerical 
values of the smallest values of m  for which the corresponding Bayes estimator 
of θ  is minimax. 
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Introduction 
In some estimation problems, the parameter of 

interest is known priori, and belongs to a proper 
subspace of the natural parameter space. In such cases, 
unbiased estimator of the parameter of interest does not 
exist (see Moors, [10]). Hence in this case we appeal on 
the other criteria such as invariance and minimaxity.  

Minimax estimation of a bounded parameter of 
discrete distributions has been a subject of interest over 
the past decades. Moors [10], Berry [1], Johnstone and 
MacGibbon [7] and Wan et al. [16] considered 
estimation of the bounded parameter of Binomial ( , )n θ  
and Poisson ( )θ  distributions under Squared Error Loss 

(SEL), weighted SEL and LINEX loss functions. For a 
classified and extensively reviewed work in this area, 
see van Eeden [15]. 

For a vast class of discrete distributions when the 
parameter space is bounded, Marchand and Parsian [9], 
Jafari Jozani and Marchand [4] and Jafari Tabrizi and 
Nematollahi [5] give conditions for which the boundary 
supported Bayes estimator of ( [0, ])mθ ∈  is minimax 
under SEL, SEL type and LINEX loss function, 
respectively. 

In the literature, minimax estimation of a bounded 
parameter are often considered under SEL, weighted 
SEL and LINEX loss function, which are convex and 
symmetric or asymmetric. As an asymmetric loss 
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function, consider the Squared Log Error Loss (SLEL) 
function, which is introduced by Brown [2] and is given 
by 

2 2( , ) (log log ) {log( )} ,L δθ δ δ θ
θ

= − =  (1) 

where both θ  and δ  are positive and ( , )L θ δ →∞  as 
0δ →  or ∞ ; see also Pal and Ling [11]. This loss is 

neither symmetric nor convex. It is convex when 

eδ
θ

∆ = ≤
 

and concave otherwise. However its risk 

function has a unique minimum at 1∆ = . Also when 
1∆ > , 2( ) (ln )L ∆ = ∆  in (1) increases sublinearly, and 

when 0 1< ∆ < , it rises rapidly to infinity at zero. Based 
on the loss function (1), underestimation is penalized 
more heavily (per unit distance) than overestimation. 
For estimation under the SLEL function, see Sanjari 
Farsipour and Zakerzadeh [13, 14], Kiapour and 
Nematollahi [8] and Rosaco et al. [12]. In estimating a 
bounded parameter of discrete distributions under the 
SLEL function (1), Jafari Jozani [3] obtained minimax 
estimator of success probability θ  of Bernoulli 
distribution when [ ,1]mθ ∈ .  

In this paper, we consider a class of discrete 
distributions including Binomial ( , ),k θ  Negative 
Binomial ( , ),r θ  Discrete Weibull ( ),θ  Consul ( , )k θ  
and some other distributions as well, and provide a 
necessary and sufficient conditions for which the Bayes 
estimator of lower bounded [ ,1],mθ ∈  0,m >  with 
respect to a boundary supported prior is minimax under 
the SLEL function. Our result is an extension and 
improvement of the work has done by Jafari Jozani [3], 
which is considered minimax estimation of the lower 
bounded parameter [ ,1]mθ ∈  of Bernoulli ( )θ -
distribution under the SLEL function; see Remark 3.2. 

To this end, in Section 1 we introduce the class of 
discrete distributions. In Section 2, we give the 
conditions for which the Bayes estimator of [ ,1]mθ ∈  is 
minimax. In Section 3, for some distributions in the 
introduced class, we find a necessary and sufficient 
condition for minimaxity of Bayes estimator, and 
provide some numerical results. A conclusion is given 
in Section 4. 

Results 

1- Class of Discrete Distributions 

Let 1 2( , ,..., )nX X X=X  has a joint probability 
function (pf) ( , ) ( )f Pθθ = =x X x , [ , ] .a bθ ∈ ⊂ Θ  

Suppose that the distribution of X  under bθ =  is 
degenerated at ( , ,..., )s s s=s . We consider minimax 
estimation of θ  under the SLEL function when θ  is 
bounded to a small enough known interval [ , ]a b ⊂ Θ . 
Since ( )δ X  is minimax for θ  under the SLEL function 

(1) if and only if ( )
b

δ X  is minimax estimator of ,
b
θ  so 

without loss of generality we assume hereafter that 
[ , ] [ ,1]a b m= .  

Let ( , ) ( )G n Pθθ = =X s , 0θ > , then ( ,1) 1G n =  
under assumption. We consider the following class of 
distributions 

{ (., ) : ( ,1) 1, ( , ) 0,

( , ) 0  for  2,3, 4}. 
k

k

C f G n G n

G n k

θ θ
θ

θ
θ

∂
= = >

∂

∂
≥ =

∂

 (2) 

The following family of discrete distributions belong 
to the class C  when 1 2, ,..., nX X X  are independently 
distributed as  

1) Bernoulli ( )θ , with ( , ) nG n θ θ=  and 1s = . 
2) Binomial ( , )k θ , with known k , ( , ) knG n θ θ=  

and s k= . 
3) Negative Binomial ( , )r θ , with known ,r  

( , ) rnG n θ θ=  and s r= . 
4) Discrete Weibull ( , ),θ β  with pf ( , )f x θ =

( 1)(1 ) (1 )x xβ β

θ θ +− − −  where 0β >  is known, with 
( , ) nG n θ θ=  and 0s = . 
5) "Zero-modified Binomial" distribution with 

parameters ( , , )k ω θ , with pf 

( , )f x θ =

(1 )
,0 1( 1)(1 ) (1 )  

( 1
0

) ( 1)

0k

k x xk
x k

x

x
x

ω ω θ
θ

ω θ θ−

= + −
 < ≤Γ + − − Γ + +

>
Γ −

 

with known k  and ,ω  ( , ) [ (1 ) ]k nG n θ ω ω θ= + −  and 
0s = . 

6) Geeta ( ,1 )β θ−  with pf ( , )f x θ =

1( 1) (1 ) , 1, 2, ,
( 1) ( )

x x xx x
x x x

ββ θ θ
β

− −Γ −
− =

Γ + Γ −


0 1,θ< ≤
11

1
β

θ
< ≤

−
, where β  is known, 

( 1)( , ) nG n βθ θ −=  and 1s = . 
7) Consul ( , )k θ  with pf  ( , )f x θ =
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1( 1) 1 ( ) , 1, 2,
( 1) ( 2)

x kxkx x
x kx x

θ θ
θ

−Γ + −
=

Γ + Γ − +
 , 

0 1,θ< ≤  where {1,2,...}k ∈  is known, ( , ) knG n θ θ=  
and 1s = . 

The above family of distributions and also some 
other distributions that belong to the class C  can be 
found in Johnson et al. [6]. 

 
Remark 1.1  Jafari Jozani and Marchand [4] introduced 
a class of discrete distributions which have the property  

( 1) ( , ) 0, 1, 2,3
k

k
k G n kθ

θ
∂

− ≥ =
∂

 and are degenerate at 

0s = , and derived a minimax estimator of the bounded 
parameter [0, ]mθ ∈  under the γ -loss function 

2( , ) ( ( ) ( ))Lγ θ δ γ δ γ θ= −
 

where (.)γ  is a monotone 
function with (0) 0γ = . By choosing ( ) logt tγ = , the 
loss function ( , )Lγ θ δ  becomes the SLEL function (1). 
But, since the class of distributions in C  have non-
negative derivatives of ( , )G n θ  and degenerate at 1s =  
and the SLEL function does not satisfy (0) 0γ = , so we 
can not apply their results to obtain a minimax estimator 
of [ ,1]mθ ∈  for distributions in the class C  under the 
SLEL function (1). 

2- Minimax Estimator 

Let 1 2( , ,..., )nX X X=X  has a joint pf (., )f θ  that 
belongs to the class C  of discrete distributions 
introduced in (2). The goal is to find a minimax 
estimator of θ  when [ ,1].mθ ∈  We will derive 
necessary and sufficient conditions for which the Bayes  
estimator of θ  with respect to a boundary supported 
prior on { ,1}m  be minimax under the SLEL function 
(1). Our results are based on the following well-known 
criteria for minimaxity applied to a boundary two-point 
prior. 

 
Lemma 2.1 A two-point boundary prior π  on { ,1}m  is 
least favourable, and the corresponding Bayes estimator 

( )πδ x  is minimax, if and only if  

1
( , ) (1, ) sup ( , ).

m
R m R Rπ π π

θ
δ δ θ δ

≤ ≤
= =  (3) 

Consider the following two-point prior 

( )   ,  (1) 1 ,mπ η π η= = −  (4) 

where 0 1.η< <  For finding the equalizer rule, i.e., the 
Bayes rule with  ( , ) (1, ),R m Rπ πδ δ=  we use the 

following lemma. 
 
Lemma 2.2  Under the SLEL function, there exists a 

unique * 1
( , ) 1G n m

η =
+

 such that 

* *( , ) (1, ),R m R
π π
δ δ=  (5) 

where *π  is the prior in (4) with *η η=  and the 
corresponding Bayes estimator of *π

δ  is given by 

*
*

{ } { }( ) ( ) (1 ( ) , )B I m I
π
δ = + −s sx x x  (6) 

where * log ( , )
exp{ }

( , ) 1
m G n m

B
G n m

=
+

 and { } (.)I s  is an 

indicator function. 
 
Proof  Using two-point prior (4), the posterior risk of an 
estimator ( )πδ X  under the SLEL function is 

2( )
log[( ) | ]E πδ

θ
=

x
x

2

2 2

( )
(log )

( )
(log ) (1 (1 | )) (log ( )) (1 | )

m

m

π

π
π

δ

δ
π δ π

 ≠

 − + =


x
x s

s
s s s x s

 

where 1(1 | )
( , ) (1 )G n m

ηπ
η η

−
=

+ −
s . From this, it is easy 

to verify that the Bayes estimator ( )πδ X  with respect to 
prior (4) is 

{ } { }( ) ( ) (1 ( ) ) ,BI m Iπδ = + −s sx x x  (7) 

where log ( , )exp{ }.
( , ) (1 )

mG n mB
G n m
η
η η

=
+ −

 Since 1m B< < , 

( )πδ x  takes values on ( ,1)m  as η  varies on (0,1) . 
From (7) the risk function of πδ  under the loss (1) is 
given by 

2

( , ) log( )(log log 2log ) ( , )

(log log ) .

BR B m G n
m

m

πθ δ θ θ

θ

= + −

+ −

 (8) 

Hence,  
2

2

( , ) (1, ) (log log ) ( , )

(log ) ,

R m R B m G m n

B

π πδ δ− = −

−
 

which is strictly increasing function of B  (and hence a 
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strictly decreasing function of η ) and has a unique root 
at *B B=  (or equivalently 

*η η= ). 
From Lemma 2.2, we conclude that the only two-

point prior of the form (4) that leads to equalizer Bayes 
rule is 

*π . Now, using Lemma 2.2 we show that *π
δ  

given in (6) is a minimax estimator of [ ,1]mθ ∈ . Our 
proof is based on the sign change method which is 
based on the following conditions: 

2.i - A necessary condition for (3) to hold with 
*π π

δ δ=  is 

* 1( , ) | 0.R θπ
θ δ

θ =

∂
≥

∂
 (9) 

2.ii -The condition 

*

2

2 ( , ) R
π

θ δ
θ
∂
∂

 has at most one sign change from +  

to − , (10) 

in case where (9) is satisfied, is sufficient for (3) to hold 
with *π π

δ δ= . 

Note that condition 2.ii implies that *( , )R
π

θ δ  is 

either convex or first convex and then concave function 
of .θ  In the following theorem we present a condition 
on m  for which *π

δ  satisfies the above conditions, and 
hence it is minimax for [ ,1]mθ ∈ . Let 

( )( , ) | ( , ).
k

k
ck G n G n cθθ

θ =

∂
=

∂
 

 
Theorem 2.1  For the family of pfs in C  and under the 
SLEL function (1), a necessary and sufficient condition 
for (3) to be satisfied with * ( ) ( )X Xππ

δ δ=  is 

1 2( , )m max m m≥ , where 1m  is the unique positive 
root of the equation 

3( ) ( , ) ( ,1) log 0,
4

m G n m G n mψ ′= + =  (11) 

and 2m  is the unique positive root of the equation 
 

2

( ) 2 ( , ) 6 ( , )

log 2 ( , ) ( , )

4 ( ,1) 2 ( ,1) 0.

[
]

m G n m mG n m

m mG n m m G n m

G n G n

ϕ ′ ′′

′′ ′′′

′′ ′′′

= − −

+ +

− − =

 (12) 

 

Proof  From (6) and (8) we have 

*

*
*2( , ) log( ) ( , ) (log

log 2log ) ( , )

2 (log log ).

BR G n B
m

m G n

m

π
θ δ θ

θ θ

θ θ

θ
θ

′

∂ = − +∂ 

+ − 

− −

 (13) 

To show necessary condition, we show that the 
condition 2.i is satisfied. Since 

1( , )1 32 ,
2 4( , ) 1

G n m

G n m

+
< <

+
 

therefore, from (13) we have 

* 1
2 log( , ) | { ( , )
( , ) 1

1( , )
2log ( ,1)}

( , ) 1

2log ( ).
( , ) 1

mR G n m
G n m

G n m
m G n

G n m

m m
G n m

θπ
θ δ

θ

ψ

=

′

∂ −
=

∂ +

+
+

+

−
>

+

 

Note that
0

lim ( )
m

mψ
+→

= −∞ , 
1

lim ( ) 1
m

mψ
→

=  and 

( ) 0mψ ′ > , i.e., ( )mψ  is a strictly increasing function 
of m . Therefore, there exists a unique 1 0m > , the root 
of the equation (11), such that 1( ) ( ) 0m mψ ψ> =  for 

1m m> . Hence * 1( , ) | 0R θπ
θ δ

θ =

∂
>

∂
 for 1m m> . 

Now, to check the sufficient condition for 
minimaxity of

 *π
δ , we check the condition 2.ii, i.e., the 

sign of *

2

2 ( , )R
π

θ δ
θ
∂
∂

. From (13) we have 

*

2

2

*
*

2

2

( , )

1 log( ) 2 ( , ) 2 ( , ) (log

log 2log ) ( , ) 2 ( , )

2(log log ) 2

{ [

]
}

R

B G n G n B
m

m G n G n

m

π
θ δ

θ

θ θ θ
θ

θ θ θ θ θ

θ

′

′′ ′

∂
∂

= − +

+ − −

+ − +

 

2

2

1 2 ( , ) 4 ( , )

( 2 log ) ( , )

{ [

]

A G n G n

C G n

θ θ θ
θ

θ θ θ

′

′′

= −

+ −  
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2(log log ) 2}m θ+ − +  

2 ( 1 ),Q θ
θ

=  (14) 

where *log log 0A B m= − >  and *logC B= +

log 0m < , since * 1m B< < . From (14), we obtain 

2

( ) 2 ( , ) 6 ( , )

2( 2 log )(2 ( , ) ( , )) .

{

}

Q A G n G n

C G n G n

θ θ θ θ
θ

θ θ θ θ θ
θ

′ ′′

′′ ′′′

∂
= − −

∂

+ − + −

 (15) 

From (2), ( ) ( , ), 1, 2,3,kG n kθ =  is an increasing 
function of [ ,1]mθ ∈ . So, for all 1m θ≤ ≤  and 

1,2,3k = , 
( ) ( ) ( )0 ( , ) ( , ) ( ,1).k k kG n m G n G nθ≤ ≤ ≤  (16) 

Therefore, 

2

( ) 2 ( , ) 6 ( , )

2 ( , ) ( , )

2 log 2 ( ,1) ( ,1) 2

{

[ ]
[ ]}

Q A G n m mG n m

C mG n m m G n m

m G n G n

θ
θ

′ ′′

′′ ′′′

′′ ′′′

∂
≤ − −

∂

+ +

− + −

 

2

2 ( , ) 6 ( , ) log 2 ( , )

 ( , ) 4 ( ,1) 2 ( ,1) 2

{ [
]}

A G n m mG n m m mG n m

m G n m G n G n

′ ′′ ′′

′′′ ′′ ′′′

< − − +

+ − − −
 

( ) 2,A mϕ= −         (say) (17) 

since logC m< . If ( ,1) 0G n′′ =  then from (16), 

( , ) 0G n θ′′ =  for all [ ,1]mθ ∈ , and hence ( ) 0Q θ
θ
∂

<
∂

 

for all [ ,1]mθ ∈  and 0m > . Now suppose that 
( ,1) 0G n′′ ≠ , then 

2

( ) 6 ( , ) 5 ( , )

4 2( ,1) ( ,1)

log 2 ( , ) 4 ( , )

( , ) 0,

[
]

m G n m mG n m

G n G n
m m

m G n m mG n m

m G n m

ϕ′ ′′ ′′′

′′ ′′′

′′ ′′′

′′′′

= − −

− −

+ +

+ <

 

and hence ( )mϕ  is strictly decreasing in m  when 
0 1m< ≤ . Also 

0
lim ( )

m
mϕ

+→
= +∞  and

1
lim ( )
m

mϕ
→

=

2 ( ,1) 6 ( ,1) 0G n G n′ ′′− − < , therefore a unique 2 0m >  

exists, as the root of equation (12), such that 
2( ) ( ) 0m mϕ ϕ< =  for 2m m> . Hence from (17),  

( )Q θ  is a strictly decreasing function of [ ,1],mθ ∈  
when 2m m> . 

For 1m m≥  condition 2.i holds, so from (14), ( )Q θ  
cannot be negative for all [ ,1]mθ ∈  and 

1 2max( , )m m m≥ . Therefore, ( )Q θ  has at most one 
sign change from +  to −  and hence from (14), 

*

2

2 2

1( , ) ( )R Q
π

θ δ θ
θ θ
∂

=
∂

  has at most one sign change 

from +  to −  when 1 2max( , )m m m≥ , i.e., the 
sufficient condition 2.ii holds for 1 2max( , )m m m≥ , 
which completes the proof. 

From Lemma 2.1 and Theorem 2.1 we conclude the 
following main result. 

 
Theorem 2.2  For the family of pfs in C  and under the 
SLEL function (1), * ( )X

π
δ  in (6)  is a minimax 

estimator of [ ,1]mθ ∈  if and only if 1 2( , )m max m m≥ , 
where 1m  and 2m  are the unique positive roots of the 
equations (11) and (12), respectively. 
 
Remark 2.1  From Theorem 2.1 and its proof, we 
conclude that: 

(i) If 1 2m m≥  then * ( )
π
δ X  is a minimax estimator 

of [ ,1]mθ ∈  if and only if 1m m≥ . 
(ii) If 1 2m m<  then 1m m≥  is a necessary condition 

and 2m m≥  is a sufficient condition for * ( )
π
δ X  to be a 

minimax estimator of [ ,1]mθ ∈ . 
(iii) If ( ,1) 0G n′′ = , then from (15) and (16) 

( ) 0Q θ
θ
∂

<
∂

 for all [ ,1]mθ ∈  and 0m > . So, from the 

proof of Theorem 2.1, * ( )
π
δ X  is a minimax estimator of  

[ ,1]mθ ∈  if and only if 1m m≥ . 
 

Remark 2.2  Wan et al. [16] and Jafari Tabrizi and 
Nematollahi [5] used LINEX loss function to derive a 
minimax estimator of [0, ]mθ ∈  in Poisson ( )θ  and a 
class of discrete distributions with the property 

( )( , ) , ( ) 0nG n e nα θθ α= < , respectively. Due to the 
complexity of LINEX loss function, they give only 
sufficient condition for a two-point boundary prior to be 
minimax for θ  and use the convexity argument of loss 
function, which gives a small interval [0, ]m  for 
minimaxity of Bayes estimator. Our class of 
distributions are different from Jafari Tabrizi and 
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Nematollahi [5], and we give a necessary and sufficient 
condition for minimaxity and use the sign change 
method argument to derive a minimax estimator of θ  
under the SLEL function. 
 
Remark 2.3 One of the most interesting families of 
discrete distributions is the power series distributions, 
including Binomial ( , ),k θ  Negative Binomial ( , ),r θ  
Poisson ( )θ  and etc. Marchand and Parsian [9], Jafari 
Jozani and Marchand [4] and Jafari Tabrizi and 
Nematollahi [5] obtained minimax estimator of upper 
bounded parameter [0, ]mθ ∈   for some distributions in 
this class, such as Binomial ( , )k θ , Negative Binomial
( , )r θ  and Poisson ( ),θ  under SEL, γ -loss and LINEX 
loss functions, respectively. Some distributions of this 
family, such as Poisson ( ),θ  do not belong to the class 
of distributions C  in (2). For estimating the lower 
bounded parameter [ ,1]mθ ∈  under SLEL function (1), 
we do not succeed to obtain a minimax estimator of θ  
for these distributions. 

3- An Special Case 
In Section 1, we introduced the class of distributions 

C  and give necessary and sufficient conditions for 
Bayes estimator of θ  under the SLEL with respect to a 
boundary supported prior to be minimax. For many 
distributions in the class ,C  we have ( , ) nG n αθ θ=  for 
some positive real .α  So, consider the following 
subclass of C , 

1 { (., ) : ( , ) ,  0,  0}.nC f G n αθ θ θ α θ= = > >  (18) 

Some of the discrete distributions that belong to class 
1C  are given in Section 1. Furthermore, the class 1C  

contains Poisson-Binomial, Lagrangian Binomial, 
Tanner-Borel and some other distributions that can be 
found in Johnson et al. [6]. 

In this section we show that for the distributions in 
the class 1C , the condition 1m m≥  is a necessary and 
sufficient condition for * ( )

π
δ X  in (6) to be a minimax 

estimator of [ ,1]mθ ∈ . 
 

Theorem 3.1  For the family of distributions in 1C  with 
0.4nα ≥  and under the SLEL function (1), * ( )

π
δ X  in 

(6) is a minimax estimator of [ ,1]mθ ∈  if and only if 
1m m≥ , where 1m  is the unique positive root of the 

equation (11). 
 

Proof  In the proof of Theorem 2.1, we show that the 
condition 1m m>  is necessary for minimaxity of 

* ( ),
π
δ X  and for these values of ,m  

1( ) ( ) ( ) 0m mψ θ ψ ψ≥ > =  for all [ ,1],mθ ∈  i.e., 
3( ) ( , ) log 0.
4

G n nψ θ θ α θ= + >  So, 

4log .
3 n

θ
α

− <  (19) 

To show the sufficient condition, note that for
1(., )f Cθ ∈ , from (15) and (19) we have 

2

1( ) ( , ) 2 6 ( 1)

( 2 log )[( ) ( 1)] 2

{ [

] }

Q AG n n n n

C n n

θ θ α α α
θ θ

θ α α

∂
= − − −

∂

+ − − −

 

2

1 ( , ) 2 (2 3 )

8( ) ( 1) ( 1) 2
3

{ [

] }

AG n n n

C n n n n

θ α α
θ

α α α α

< −

+ − + − −

 

1 2 5( , ) 2 ( ) 0,
3 3

{ [ ]}AG n n nθ α α
θ

< − ≤  

for all [ ,1]mθ ∈  and 0m > . Therefore, ( )Q θ  is a 
strictly decreasing function of [ ,1]mθ ∈  when 0m > . 
The rest of the proof is similar to the proof of Theorem 
2.1. 
 
Remark 3.1  For the distributions in the class 1C , the 
equation (11) reduces to 

2 3( )  log 0.
4

n

m m n m
α

ψ α= + =  (20) 

If 1( )m n  is the unique root of the equation (20) and 

1( ) log ( )
2

U n n m nα
= , then from (20) we have 

( ) 3 ( ) 0.
2

U ne U n+ =  (21) 

Taking derivative from both sides of (21) with 
respect to n  we have 

( ) 3( )( ) 0
2

U nU n e
n
∂

+ =
∂

 

or
 

1 1
1

 ( ) log ( ) . ( ) 0,
2 ( )

nU n m n m n
n m n n

α  ∂ ∂
= + = ∂ ∂ 
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i.e., 1 1
1

( ) log ( )
( ) 0

m n m nm n
n n
∂

= − >
∂

. Therefore, 

1( )m n  is a strictly increasing function of .n  
Furthermore, if *lim ( )

n
U n y

→∞
= , then *y  is the unique 

root of the equation 3 0
2

ye y+ = , which is *y =

0.43256275−  by a numerical computation. So, 

*
1lim log ( )

2n
n m n yα

→∞
= , i.e., 

*

1
2log ( ) ym n

nα
≈  or 

1( )m n
*2 0.86512550exp{ } exp{ }y

n nα α
−

≈ =  for large 

values of  n . 
 
Remark 3.2  For Bernoulli ( )θ  distribution, ( , )G n θ =

nθ  and equation (20) reduces to 2( )
n

m mψ =

3 log 0.
4

n m+ =  Jafari Jozani [3] showed that for 

Bernoulli ( )θ  distribution and under the SLEL function 
(1), * ( )X

π
δ  in (6) with ( , ) nG n m m=  is a minimax 

estimator of [ ,1]mθ ∈  if and only if *
1m m>  where *

1m  
is the unique root of the equation 

* 2( ) 3 log 0.
n

m m n mψ = + =  

Since * ( ) ( )m mψ ψ<  for all 0 1m< < , we 
conclude that *

1 1m m< . Therefore, our result is sharper 
than his result. Also the work of Jafari Jozani [3] is an 
especial case of our result. 

Table 1 summarizes a numerical solution of 1m , the 
root of equation (20), for different values of α  and n . 
The first row of this table is for Bernoulli ( )θ  
distribution and the other rows are for the other 
distributions in class 1C  (such as Binomial ( , )k θ , 
Negative Binomial ( , )r θ  and Geeta ( , )β θ ) with 
suitable choices of .α  From this table, we observe that  
 

 
Table 1. Numerical values of m1 for different values of α and n 

n 
α 1 2 3 4 5 6 7 8 9 10 

1 0.421 0.649 0.749 0.805 0.841 0.866 0.884 0.897 0.908 0.917 

1.5 0.562 0.749 0.825 0.866 0.891 0.908 0.920 0.930 0.938 0.944 

2 0.649 0.805 0.866 0.897 0.917 0.930 0.940 0.947 0.953 0.958 

2.5 0.707 0.841 0.891 0.917 0.933 0.944 0.952 0.958 0.962 0.966 

3 0.749 0.866 0.908 0.930 0.944 0.953 0.960 0.964 0.968 0.971 

the values of 1m  increase as n  or α  or both increases 
(see Remark 3.1). 

4- Conclusion 
In this paper a class of discrete distributions is 

introduced. This class includes Binomial ( , ),k θ  
Negative Binomial ( , ),r θ  discrete Weibull ( )θ  and etc. 
In estimation of the lower bounded parameter [ ,1]mθ ∈
, 0m > , we find the Bayes estimator of θ  under SLEL 
function with respect to a boundary supported prior and 
find a necessary and sufficient condition for which the 
Bayes estimator is minimax. We use the sign change 
method to prove the minimaxity. For a subclass of the 
desired discrete distributions, we find a simple 
necessary and sufficient condition for minimaxity and 
compute numerical values of 1m  for different values of 
α  and ,n  for which the Bayes estimator of [ ,1]mθ ∈  
is minimax. 
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