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Abstract 
The purpose of this paper is to provide some asymptotic results for 

nonparametric estimator of the Lorenz curve and Lorenz process for the case in 
which data are assumed to be strong mixing subject to random left truncation. 
First, we show that nonparametric estimator of the Lorenz curve is uniformly 
strongly consistent for the associated Lorenz curve. Also, a strong Gaussian 
approximation for the associated Lorenz process is established under appropriate 
assumptions. Using this strong Gaussian approximation, a law of the iterated 
logarithm for the Lorenz process is also derived. 
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Introduction 
Pietra [25] and Gastwirth [18] independently 

introduced the Lorenz curve corresponding to a non-
negative random variable (rv) X with a distribution 
function (df) ,F  quantile function ( )Q p and finite 
mean ( )E X µ=  as: 

0

1( ) : ( ) , 0 1.
t

FL t Q s ds t
µ

= ≤ ≤∫  

In econometrics, with X  representing income, 
( )L t  gives the fraction of total income that the holders 

of the lowest tht fraction of income possesses. Most of 
the measures of income inequality are derived from the 
Lorenz curve. An important example is the Gini index 

associated with F  defined by 
1

0
1

0

[ ( )]
: 1 2( ) ,

F
F F

u L u du
G CL

udu

−
= = −∫

∫
 

where 
1

0
( ) ( )F FCL L u du= ∫  is the cumulative Lorenz 

curve corresponding to .F  This is a ratio of the area 
between the Lorenz curve and the 45° line to the area 
under the 45° line. The numerator is usually called the 
area of concentration. Kendall and Stuart [21] showed 
that this is equivalent to a ratio of a measure of 
dispersion to the mean. In general, these notions are 
useful for measuring concentration and inequality in 
distributions of resources, and in size distributions. For 
a list of applications in different areas, we refer the 
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readers to Cs o rgo ′′  and Zitikis [9]. 
To estimate the Lorenz curve, one can use the Lorenz 

statistic ( )nL y  defined by 

0

1( ) ( ) , 0 1,
y

n n
n

L y Q u du y
µ

= ≤ ≤∫  

where nµ  is the sample mean and ( )nQ y  is the 
empirical quantile function constructed from 
independent and identically distributed (i.i.d.) sample 
taken from .F  

Goldie [19] proved the uniform consistency of nL  to 

FL  and derived the weak convergence of the Lorenz 

process [ ]( ) : ( ) ( ) ,0 1n n Fl t n L t L t t= − ≤ ≤  to a 
Gaussian process under suitable conditions. Cs o rgo ′′  
et al. [6] gave a unified treatment of strong and weak 
approximations of the Lorenz and other related 
processes. In particular, they established a strong 
invariance principle for the Lorenz process, by which 
Rao and Zhao [26] derived one of their two versions of 
the law of the iterated logarithm (LIL) for the Lorenz 
process. Different versions of the LIL under weaker 
assumptions are also obtained by Cs o rgo ′′  and Zitikis 
([9], [11]). In Cs o rgo ′′  and Zitikis [10], confidence 
bands for the Lorenz curve that are based on weighted 
approximations of the Lorenz process are constructed. 
Cs o rgo ′′  et al. [7], obtained weak approximations for 
Lorenz curves under random right censorship. Strong 
Gaussian approximations for the Lorenz process when 
data are subject to random right censorship and left 
truncation was established by Tse [27], he is also 
derived a functional LIL for the Lorenz process. 

However, in most economic situations, the basic 
sequence of observations may not be independent. It is 
more realistic to assume some form of dependence 
among the data are observed. Cs o rgo ′′  and Yu [8], 
obtained weak approximations for Lorenz curves and its 
inverse under the assumption of mixing dependence. 
Glivenko-Cantelli-type asymptotic behavior of the 
empirical generalized Lorenz curves based on random 
variables forming a stationary ergodic sequence with 
deterministic noise were considered by Davydov and 
Zitikis[12]. Davydov and Zitikis [13] established a large 
sample asymptotic theory for the empirical generalized 
Lorenz curves when observations are stationary and 
either short-range or long-range dependent. Strong laws 
for the generalized absolute Lorenz curves when data 
are stationary and ergodic sequences established by 
Helmers and Zitikis [20]. Based on the generalized 
Lorenz curves Davydov et al. [14] proposed a statistical 
index for measuring the fluctuations of a stochastic 

process. They developed some of the asymptotic theory 
of the statistical index in the case where the stochastic 
process is a Gaussian process with stationary increments 
and a nicely behaved correlation function. The uniform 
strong convergence rate of the Lorenz curve estimator 
under strong mixing hypothesis is obtained by Fakoor et 
al. [17]. They also established a strong Gaussian 
approximation for the Lorenz process, by which they 
derived a functional LIL for the Lorenz process, under 
the assumption of strong mixing. The counterpart of 
these results for the censored dependent model was 
established by Bolbolian et al. [2]. 

The purpose of this paper is to provide some 
asymptotic results for Lorenz process ln(t) for the case in 
which data are assumed to be strong mixing subject to 
random left truncation. 

Consider a sequence of rv's 1 2, ,..., nX X X  with 
common unknown absolutely continuous df F  and 
finite mean µ . These rv's are regarded as the lifetimes 
of the items under study which may not be mutually 
independent. Among the different forms in which 
incomplete data appear, right censoring and left 
truncation are two common ones. Left truncation may 
occur if the time origin of the lifetime precedes the time 
origin of the study. Only subjects that fail after the start 
of the study are being observed, otherwise they are left 
truncated. This means that some subjects are sampled, 
while others are neglected. This model arises in various 
fields, e.g., astronomy, economy and medical studies 
(see, e.g. [28]). Let 1 2, ,..., nT T T  be a sequence of i.i.d. 
random variables with continuous df ,G they are also 
assumed to be independent of the rv's iX 's. In the left 
truncation model, ( , )i iX T  is observed only when 

i iX T≥ . Let 1 1( , ),..., ( , )n nX T X T  be a sample which 
one observes (i.e., i iX T≥ ), and 1 1: ( ) 0,T Xγ = Ρ ≤ >  
where Ρ  is the absolute probability (related to the N -
sample). Note that n  itself is a rv and that γ  can be 

estimated by n
N

(although this estimator cannot be 

calculated since N is unknown). Assume, without loss 
of generality, that iX  and iT  are nonnegative random 
variables, 1,..., .i N=  For any df L  denotes the left and 
right endpoints of its support by inf{ : ( ) 0}La x L x= >  
and sup{ : ( ) 1}Lb x L x= < , respectively. Then under 
the current model, as discussed by Woodroofe [28], we 
assume that G Fa a≤  and .G Fb b≤  Define 

(1.1) 1 1 1 1
-1

1 1

C(x)= (T x X |T X )
= (T x X )= G(x)(1-F(x)),P γ

Ρ ≤ ≤ ≤

≤ ≤
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where (.) (. | )P n= Ρ  is the conditional probability 
(related to the n -sample) and consider its empirical 
estimate 

(1.2) 
n

-1
n i i

i=1
C (x)=n I(T x X ),≤ ≤∑  

where I(.)  is the indicator function. Then the product-

limit (PL) estimator F̂n  of F  is given by 

(1.3) 
iX

1F̂ (x)=1- 1 .
( )n

x n inC X≤

 
− 

 
∏  

The cumulative hazard function ( )xΛ  is defined by 

(1.4) 
0

( )( ) .
1 ( )

x dF ux
F u

Λ =
−∫  

Let 

(1.5) 
1 1 1

1
1 0

( ) ( | )

( ) ( ) ( ),
x

F x X x T X

P X x G u dF uγ

∗

−

= Ρ ≤ ≤

= ≤ = ∫
 

be the df of the observed lifetimes. Its empirical 
estimator is given by 

1

1
( ) ( ).

n

n i
i

F x n I X x∗ −

=

= ≤∑  

On the other hand, the df of the observed iT 's is 
given by 

1 1 1

1
1 0

( ) ( | )

( ) ( ) ( ),

G x T x T X

P T x G x u dF uγ

∗

∞−

= Ρ ≤ ≤

= ≤ = ∧∫
 

and is estimated by 

1

1
( ) ( ).

n

n i
i

G x n I T x∗ −

=

= ≤∑  

It then follows from (1.1) and (1.2) that 

(1.6) 
( ) ( ) ( ),
( ) ( ) ( ).n n n

C x G x F x
C x G x F x

∗ ∗

∗ ∗

= −

= − −
 

Finally (1.1), (1.4) and (1.5) give 

0

( )( ) .
( )

x dF ux
C u

∗

Λ = ∫  

Hence, a natural estimator of Λ  is given by 

0
1

( ) ( )ˆ ( ) ,
( ) ( )

nx n i
n

in n i

dF u I X xx
C u nC X

∗

=

≤
Λ = =∑∫  

which is the usual so-called Nelson-Aalen estimator of 
.Λ  Moreover, ˆ

nΛ  is the cumulative hazard function of 

the PL estimator F̂n  defined in (1.3). 
The quantile function Q  and its empirical 

counterpart nQ  are defined by 

(1.7) 
n

Q(p)=inf{x ; F(x) p}  and 

ˆQ (p)=inf{x ; F (x) p}n

∈ℜ ≥

∈ℜ ≥
 

Suppose that 0 10 1.p p< ≤ <  We defined the Lorenz 
curve corresponding to rv X  as: 

0
0 1

1( ) : ( ) , ,
p

F p
L p Q s ds p p p

µ
= ≤ ≤∫  

where 1

0

( ) .
p

p
Q s dsµ = ∫  Therefore the natural estimator 

for the Lorenz curve ( )FL p  is 

0
0 1

1( ) : ( ) , ,
p

n np
n

L p Q s ds p p p
µ

= ≤ ≤∫  

where 1

0

( ) .
p

n np
Q s dsµ = ∫  

The main aims of this paper are to derive strong 
uniform consistency of the Lorenz statistic and strong 
Gaussian approximation for Lorenz process, for the case 
in which data are assumed to be dependent subject to 
random left truncation. As a result of our strong 
Gaussian approximation, we obtain a functional LIL for 
the Lorenz process. 

In this paper we consider the strong mixing 
dependence, which amounts to a form of asymptotic 
independence between the past and the future as shown 
by its definition. 

 

Definition 1. Let { , 1}iX i ≥  denote a sequence of 
random variables. Given a positive integer ,m  set 

(1.8) { }1
1

( )

sup | ( ) ( ) ( )|; ,k
k m

k

m

P A B P A P B A B

α

∞
+

≥

=

∩ − ∈ℑ ∈ℑ
 

where k
iℑ  denote the σ -field of events generated by 

{ ; }.jX i j k≤ ≤  The sequence is said to be strong 
mixing (α -mixing) if the mixing coefficient 

( ) 0mα →  as .m →∞  
Among various mixing conditions used in the 

literature, strong mixing is reasonably weak and has 
many practical applications (see, e.g. [16], [4] or [5] for 
more details). In particular, Masry and Tjostheim [24] 
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proved that, both ARCH processes and nonlinear 
additive AR models with exogenous variables, which 
are particularly popular in finance and econometrics, are 
stationary and strong mixing. 

Now we introduce our main assumption that is used 
to state our results gathered below for easy reference. 

A. { , 1}iX i ≥  is a sequence of stationary strong 

mixing rv's with mixing coefficient 
1(log )( ) ( )nn O e
ν

α
+−=  

for some 0.ν >  
In the next Section, we present our main results. 

Results 
In this section we first derive strong uniform 

consistency of the Lorenz statistic and strong Gaussian 
approximation for Lorenz process, for the case in which 
data are assumed to be dependent subject to random left 
truncation and finally as a result of our strong Gaussian 
approximation, we obtain a functional LIL for the 
Lorenz process. 

Theorem 1 below proves the uniform strong 
consistency with rate of the estimator Ln. 

 
Theorem 1. Let 0 10 1.p p< ≤ <  Under Assumption A, 
assuming that F ′ = f is bounded away from zero on 
[Q(p0)−δ, Q(p1)+δ], for some δ > 0. Then 

(2.1) ( ) ( )
0 1

log logsup n F
p p p

nL p L p O
n≤ ≤

 
− =   

 
 a.s. 

Proof. An elementary computation shows that, 

(2.2) 
( ) ( ) ( ) ( )

( )

0

1

.

p

n F np
n

n
F

n

L p L p Q s Q s ds

L p

µ
µ µ
µ

− = −  

−
−

∫
 

It is easy to see that, 

(2.3) ( ) ( )1

0

.
p

n np
Q s Q s dsµ µ− = −  ∫  

Now, by using (2.2), (2.3) and Lemma 3 of  [23], we 
obtain the results.   

For construct strong Gaussian approximation we first 
introduce the following Gaussian process, which plays 
an important role to present our strong approximation. 

Let ( ) ( ) ( )* , 0,j jg s I X s F s j= ≤ − ≥  

(2.4) 

( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

1 1

1 1
2

, cov ,

cov , cov , .j j
j

s s g s g s

g s g s g s g s
∞

=

′ ′Γ =

 ′ ′+ + ∑
 

Define, for 0 t b≤ ≤ , two parameter mean zero 
Gaussian process 

(2.5) ( ) ( )
( )

( )
( ) ( )20

, / , /
, : ,

tK t n n K u n n
B t n dC u

C t C u
= +∫  

where { ( , ),0 , }K s t s t b≤ ≤  is a Kiefer process in 
Theorem 3 of [15] with covariance function 

( ) ( ) ( )* , , , min , , ,t t s s t t s s′ ′ ′ ′Γ = Γ  

and ( , )s s ′Γ  given by (2.4). 
We now restate below a strong approximation by 

Bolbolian et al. [3] for the normed PL-quantile process 
( ) : ( ( ))[ ( ) ( )]n nu n f Q u Q u Q uρ = −  by a two parameter 

Gaussian process at the rate ((log ) )O n λ− , for some 
0λ > . The statements are conditional on the observed 

sample size n. 
 
Theorem 2. (Bolbolian et al. [3]) Let 0 10 1.p p< ≤ <  
Under Assumption A, assume that F is Lipschtiz 
continuous and that F is twice continuously 
differentiable on [Q(p0)−δ, Q(p1)+δ], for some δ > 0, 
such that f is bounded away from zero, then there exists 
a two parameter mean zero Gaussian process B(t,u) for 
t,u≥0, such that, 

( ) ( ) ( )( )

( )( )
0 1

sup 1 ,

log a.s.,

n
p p p

p p B Q p n

O n λ

ρ
≤ ≤

−

− −

=
 

for some λ > 0 □ 
We will give strong Gaussian approximation of the 

Lorenz process over restricted interval [p0,p1] for fixed 
0 < p0 ≤ p1 < 1. 

In the full model, Langberg et al. [22] define the 
total time on test transform curve corresponding to a 
continuous distribution F on 1[0, ), ( )FH p−∞ , for 

[0,1]p ∈  as 

( ) ( ) ( )

( ) ( ) ( ) ( )

1

0

0

1

1 , 0 0.

p

F

p

H p y dQ y

p Q p Q y dy Q

− = −

= − + =

∫

∫
 

Obviously, 1 1
1( ) (1): limF F pH p H− −
↑≤ = 1( )FH p µ− = . For 

the our model, we modify the definition of 1( )FH p−  as 

(2.6) 
( ) ( ) ( )

( ) [ ]
0

1
1

0 1, , .

F

p

p

H p p p Q p

Q y dy p p p

− = −

+ ∈∫
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As 0 0p ↓  and 1 1p ↑ , 
11

1 0
( ) ( )FH p Q y dy µ− → =∫ . 

We can regard 1
1( )FH p−  as a surrogate for the finite 

mean μ. A natural estimator for 1( )FH p−  is 

( ) ( ) ( )

( ) [ ]
0

1
1

0 1, , .

n n

p

p

H p p p Q p

Q y dy p p p

− = −

+ ∈∫
 

In the next theorem, we construct a two parameter 
mean zero Gaussian process that strongly uniformly 
approximate the empirical process 1n(p). 
 
Theorem 3. Let 0 10 1.p p< ≤ <  Under Assumption A, 
assume that F is Lipschtiz continuous and that F is 
twice continuously differentiable on [Q(p0)−δ, 
Q(p1)+δ], for some δ > 0, such that f is bounded away 
from zero. Then there exists a two parameter mean zero 
Gaussian process B(t,u) for t,u ≥ 0, such that, almost 
surely, 

(2.7) 

( ) ( )

( ) ( )( )
( )( )

( )
( ) ( )( )

( )( )

( )( )

0 1

0

1

0

1
1

1

1

1sup 1

,

,

log ,

n
p p p F

p

p

p

F p

p
H p

p y B Q y n
dy

f Q y

p y B Q y n
L p dy

f Q y

O n λ

−
≤ ≤

−

−

 −



−
− 



=

∫

∫

 

for some 0.λ >  
 
Proof. See the Appendix. □ 

The next theorem gives a functional LIL for the 
Lorenz process. We work on the probability space of 
Theorem 3. Let D[a,b] [ , ]D a b  be the space of 
functions on [a,b] that are right continuous and have left 
limits and B is the unit ball in the reproduce kernel 
Hilbert space H(Γ*). 

 
Theorem 4. Suppose that conditions of Theorem 3 are 
satisfied. On a rich enough probability space, 

(.) / 2 log lognl n   is almost surly relatively compact in 
D[p0,p1] with respect to the supremum norm and its set 
of limit points is 

( ) ( )
( )
( )( )0

1
1

1:
u

h h p
F

h y
G g g u dy

H p f Q y−

= =


∫  

( ) ( )
( )( )

1

0
0 1, , ,

p

F p

h y
L u dy p u p h H

f Q y

− ≤ ≤ ∈ 


∫  

where 

[ ] ( ) ( )
( )

( )
( ) ( )

0 1

20

: , ,

: .
u

g u
H h p p h u

C u

g x
dC x g B

C x

= →ℜ =


+ ∈ 


∫

 

Proof. Theorem 4 follows at once from (2.7) and 
Theorem A in [1]. □ 

Appendix 

In establishing Theorem 3, we were aided by some 
ideas found in [27], but first we start with the following 
lemmas which is necessary for achieving the 
establishment of the our results. 

 
Lemma 1. Suppose the conditions of Theorem 2 are 
satisfied. We have, 

0 1

-1 -1
n Fn p

log log nlim sup H (p)-H (p) =O a.s.
np p→∞ ≤ ≤

 
  
 

 

Proof. By Lemma 3 of [25], we have, 

[ ]
0 1 0 1

00 1

-1 -1
n F 1 n

p p

n
p

sup H (p)-H (p) sup (p -p)|Q (p)-Q(p)|

+ sup |Q (y)-Q(y)|dy

log log n= O  a.s. 
n

p p p p

p

pp p

≤ ≤ ≤ ≤

≤ ≤

≤

 
  
 

∫



 

Next, define the normed total time on test empirical 
process nt ( )p  by 

-1 -1
n n F 0 1t ( ) H (p)-H (p) , [ , ].p n p p p = ∈   

Lemma 2 characterize the asymptotic limit of nt ( ).p  
 
Lemma 2. Suppose the conditions of Theorem 2 are 
satisfied. Then there exists a two parameter mean zero 
Gaussian process ( , )B t u  for , 0,t u ≥  such that, 

00 1

1
n

p

(p -y)B(Q(y), n)sup (p)- dy
f(Q(y))

p

pp p
t

≤ ≤




∫
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( )
2

-1(p -p) B(Q(p), n) O (log n) , a.s.
f(Q(p))

λ
+ =


 

 
Proof. Proof of this lemma can be done using similar 
augment of Lemma 3.2 in [27], we therefore omit the 
proof. □ 

Next, we define the scaled total time on test 
transform, its statistic and associated empirical process 
corresponding to F.  

(3.1) 
-1 -1
F n

F n-1 -1
F 1 n 1

H ( ) H ( )W (p):= , W (p):= ,
H ( ) H ( )

p p
p p

 

and 

[ ]n n Fw (p):= n W (p)-W (p)  

for 0 1p [p ,p ].∈  
The following lemmas give the strong uniform 

consistency of nW (p)  and strong Gaussian 
approximation of the scaled total time on test empirical 
process respectively. 

 
Lemma 3. Suppose that conditions of Theorem 2 are 
satisfied. We have,  

0 1
n F

p

log log nsup W (p)-W (p) O a.s.
np p≤ ≤

 
=   

 
 

 
Proof. By triangular inequality and Lemma 1, the left 
hand side is bounded by 

0 1

0 1

0 1

0 1

-1 -1
n n
-1 -1

p n 1 F 1

-1 -1
n F
-1 -1

p F 1 F 1

-1 -1
-1 F 1 n 1
n -1 -1

p n 1 F 1

-1 -1
F n-1

p F 1

H ( ) H ( )sup
H ( ) H ( )

H ( ) H ( )sup
H ( ) H ( )

H ( ) H ( )sup H ( )
H ( )H ( )

1sup H ( ) H ( )
H ( )

log log nO a.s.
n

p p

p p

p p

p p

p p
p p

p p
p p

p pp
p p

p p
p

≤ ≤

≤ ≤

≤ ≤

≤ ≤

−

+ −

−
≤

 + − 

 
=   

 


 

 
Lemma 4. Suppose that conditions of Theorem 2 are 
satisfied. Then there exists a two parameter mean zero 
Gaussian process ( , )B t u  for , 0,t u ≥ such that, 

( )

( )

0 1

0

1

0

n -1
p F 1

2
1 1

-1
F 1

2-1
F 1

-

1sup (p)-
H ( )

(p -y)B(Q(y), n) (p -p) B(Q(p), n)dy
f(Q(y)) f(Q(p))

H ( ) (p -y)B(Q(y), n) dy
f(Q(y))H ( )

O (log n) a.s.,

p p

p

p

p

p

w
p

p

p

λ

≤ ≤

 
+ 

 

+

=

∫

∫

 

for some 0.λ >  
 
Proof. Proof can be done along the lines of Lemma 3.5 
of [27], we therefore omit the proof. □ 
 
Proof of Theorem 3. By Definition of the Lorenz curve 
corresponding to F  in the our model and by using (2.6) 
and (3.1) we have 

(3.2) 
1

0

1(p -y)Q(y)W (y) ( ).
Q(u)du

F Fp

p

L y= +
∫

 

We have also 

(3.3) 
1

0

1
0 1

(p -y)Q (y)W (y) ( ), [ , ].
Q (u)du

n
n np

np

L y y p p= + ∈
∫

 

Substituting (3.2) and (3.3) in Lemma 4, we obtain 
the result. □ 
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