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Abstract

A numerical method for solving variational problems is presented in this paper. The

method is based upon hybrid of Hartley functions approximations. The properties of hybrid

functions which are the combinations of block-pulse functions and Hartley functions are

first presented. The operational matrix of integration is then utilized to reduce the

variational problems to the solution of algebraic equations. Illustrative examples are

included to demonstrate the validity and applicability of the technique.

1. Introduction

Orthogonal functions and polynomial series have received considerable attention in

dealing with various problems of dynamical systems. Typical examples are the Walsh

functions [1], block-pulse functions [2], Laguerre polynomials [3], Legendre

polynomials [4], Chebyshev series [5] and Fourier series [6]. The main characteristic of

this technique is that it reduces these problems to those of solving a system of algebraic

equations thus greatly simplifying the problem. The approach is based on converting the

underlying differential equations into integral equations through integration,

approximating various involved in the equation by truncated orthogonal series and

using the operational matrix of integrationP , to eliminate the integral operations.

Keywords: Hybrid; Hartley functions; Operational matrix; Variational problems; Direct methods;

Orthogonal functions.
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The element h(m,n,t) for, m=l;2,...,N, n=-r,-r+l,...,O,1,...,r are the basis

functions. Orthogonal on certain interval [0,1], and the matrix P can be uniquely

determined on the particular orthogonal functions. The direct method of Ritz and

Galerkin in solving variational problems has been of considerable concern and is well

covered in many textbooks [7],[8]. Chen and Hsiao [1] introduced the Walsh series

method to solve variational problems. Due to the nature of the Walsh functions, the

solutions obtained were piecewise constant.

Refs.[6,9] applied Fourier series and Taylor series to obtain a solution to the second

example in [1] which is an application to the heat conduction problem. It is shown that

to obtain the Taylor series coefficient, a matrix commonly known as Hilbert matrix is

used. Hilbert matrices are ill conditioned and hence the Taylor series is not suitable for

the solution ofthe second example in [1].

In the present paper, we introduce a new direct computational method for solving

variational problems. This method consists of reducing the variational problems to a set

of algebraic equations by first expanding the candidate function as a hybrid functions

[10] with unknown coefficients. These hybrid functions, which consists of block-pulse

functions plus Hartley functions [11] are given. The operational matrix of integration is

then utilized to evaluate the hybrid function coefficients. The variational problems are

first transferred into a system of algebraic equalities. Here we will demonstrate the

results by considering the illustrative examples discussed in [3] and the second example

in [1].

2. Properties of Hybrid Functions

2.1. Hybrid Functions

Hybrid of Hartley functions h(m,n,t),m=1,2,...,N, n=-r,-r+l,...,-I,O,I,...,r

defined on [0,1], have three arguments, nand m are the order for Hartley functions and

block-pulse functions respectively and t is the normalized time and is defined as
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{

m-I m
~JNt+l-m), -<s't <s,-

h(m,n,t) = N N

0, otherwise,
(1)

Here, ~n (t) = cas(nt) are the well-known Hartley functions of order n which are

orthogonal in the interval [0,1] and satisfy the following formula [II]:

cas( nt) = Cos(2nnt) + Sin(2nnt ). (2)

Since h( m,n,t) is the combination of Hartley functions and block-pulse functions,

which are both complete, thus the set of hybrid functions, form a complete set.

2.2. Function Approximation

A function j (t ) defined over [0,I) may be expanded as

where cmnare given by

00 00

j(t)= L LCmnh(m,n,t),
n=-oom=l

(3)

( j(t),h(m,n,t))

cmn= Ilh(m,n,t)112 ' (4)

and (.,.) denotes the inner product. If the infinite series in Eq. (3) is truncated, then Eq.

(3) can be written as r N

j(t)~ L LCmnh(m,n,t)=CTH(t),
n=-rm=l (5)

where C and H (t) are (2r + I)N x I matrices given by

C = [cl,-r ,,,., CN,-r 1 cl,-r+l ,,,., CN,-r+l 1".1 Cl,O' '''' CN,O 1.,,1 cl,r ,..., CN,r]T , (6)

and

H (t) = [h(1,-r,t ),..., h( N,-r,t) 1h(1,-r + I,t ),...,h( N,-r + I,t) I

...1 h(1,O,t),...,h( N,O,t) 1...1h(1,r,t ),...,h( N,r,t)f.
(7)

Also, the integration of the cross product of two hybrid vector is

f~ H(t)HT (t)dt = D, (8)

where D is given by

D = ~diag.( 1,1,...,1),
N

and, 1 is an N x N identity matrix.
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2.3. Operational Matrix of Integration

The integration of the vector H (t) defined in Eq. (7 )is given by

f~H(tl)dt'c::.PH(t), (9)
where P is the N(2r + 1)x N(2r + 1) operational matrix for integration and is given by

0

0

0

0

0

0

-1
r

L
r0 0 0 0

In Eq. (10) ] is an N x N identity matrix and

t 1 ... 1

0 t ... 1

1

1

Pb =1: . ..

0 0 ... t 1

0 0 ... 0 t

0 0

0 0

-1 -]2

0 0

0 0

(10)

0 0

(11)

3. Hybrid Functions Direct Method

Consider the problem of finding the ext~emumof the functional

J = f~F(t,x(t),x(t))dt.
The necessary condition for x( t) to extremize J (x) is that it should satisfy the

Euler- Lagrangeequation

(12)

of -~(o~) = 0,
ox dt ox

with appropriate boundary conditions. However, the above differential equation can be

integrated easily only for simple cases. Thus numerical and direct method such as well-

.::L 0 0 0 L
r ... r

-=L 0 0 L 0r-l ... r-1

0 0 0 .::L 0 L... 2 2

1 I 0

... 0 0 -] ] 0
P--

2Nn L L ] 2nPb .::L -=L
r ... 2 r r-1 ...

0 0 -] ] 0 0

0 .::L 0 L 0 0... 2 2
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known Ritz and Galerkin methods have been developed to solve variational problems.

Here we consider a Ritz direct method for solving Eq.(12) using hybrid functions.

Suppose, the rate variable x( t) can be expressed approximately as
r N

x(t) = I ICmnh{m,n,t) = cTH(t). (13)
n=-r m=!

Using Eq.(9), x(t) can be represented as

x(t) = f>(t')dt'+x(O)=CT f: H(t')dt'+x(O)

=CTpH(t)+X~H(t)=(CTp+X~ )H(t), (14)

where

Xo = [0,...,0 10,...,01...1 x(O),...,x(O) I0,...,0 1...1o,...,of.

We can also express t in terms of H (t) as

1 III 1 3 2N -1
t=[-,...,-I ,..., 1...1-,-,..., I

2rNn 2rNn 2(r-l)Nn 2(r-l)Nn 2N 2N 2N

-1 -1 -1 -1 T
-,...,-I...I-,...,-]H(t) = d H(t).2Nn 2Nn 2rNn 2rNn

(15)

Substituting Eqs.(13)-(15) in Eq.(12) the functional J( x) becomes a function of

cmn,m= 1,2,...,N,n = -r,-r + 1,...,-1,0,1,...,r.Hence, to find the extremum of J(x)we

find

8J =0.
8cmn (16)

The above procedure is now used to solve the following variational problems.

4. Illustrative Examples

4.1 Example 1

Consider the problem of finding the minimum of the functional[12]

J ( x ) = fj X2 + tx+ x2 ] dt, (17)

with boundary conditions
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1
x(O)=O, x(1)=-.

4 (18)

Using Eqs.(13)-(15) in Eq.(17), we get

J(x) = fJCTH(t)HT (t)C + CTH(t)HT (t)d + CT PH(t)HT (t)pT C ]dt.

Using Eq.(8), we obtain

J(x) = CTDC + CTDd + CTPDpT C. (19)

Also, using Eq.(14) and the boundary conditions in Eq.(18), we obtain

1
1 1,

x(1) = CT H(t)dt =-.
0 4

Let

v = f~ H ( t )dt,

Hence we have

CT 1V=-
4' (20)

We now minimize Eq.(19) subject to Eq.(20), using the Lagrange multiplier technique.

Suppose

~ T 1
J(x)=J(x)+'A(C v--),

4

where 'A is the Lagrange multiplier. Using Eq.(16), we get

aJ =0 aJ =0
ac 'a'A

or
1

2DC+Dd+2PDpTC+'Av=0, CTv=-.
4 (21)

By choosing N,r,Eq.(21) is solved from which the coefficient vector C and the

Lagrange multiplier 'A can be found. In table 1, a comparison is made between the exact

solution together with the approximate values using the present approach,

for N = 2,r = 2. Since f~ H (t' )dt' is a continuous vector we get a continuous solution

for x(t). x(t)=CT f~H(t)dt',
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Table 1. Estimated and exact values of x(t}

4.2 Example 2. Application to the heat conduction problem

Consider the extremization of

J(x) = f)ti2(t) - xg(t)] dt, (22)

where g( t) is a known function satisfying

f;g(t)dt =-1, (23)

with the boundary conditions

i(O) =0, i(1) = O. (24)

Schechter[13] gave a physical interpretation for this problem by noting an

application in heat conduction and [1] considered the case where g( t) is given by

{

II_1 O<t <- -< t <1
g(t) = ' - - 4' 2 - -

3, otherwise
(25)

and gave and approximate solution using Walsh function. The exact solution is

t Exact Hybrid functions N=2, r = 2

0 0 0

0.1 0.04195 0.04194

0.2 0.07932 0.07932

0.3 0.11247 0.11242

0.4 0.14175 0.14177

0.5 0.16744 0.16745

0.6 0.18981 0.18982

0.7 0.20907 0.20902

0.8 0.22541 0.22547

0.9 0.23901 0.23902

1 0.25 0.25
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x( t ) =

1 2-t
2 '

321--t +t--
2 8'

1 2 3-t -t+-
2 8'

1
O:S;t:S;-

4

1 1
-<t:S;-
4 2

otherwise

Here, we solve the same problem using hybrid functions. First we assume

x( t) = CTH (t).

In view of Eq.(25), we write Eq.(22) as

1 ) ! ! 1

J = - r x2(t )dt + 4 r4 x( t )dt - 4 r2 x( t )dt + rx( t )dt,
2 Jo Jo Jo Jo

or

1 1 1 1 1
J = - r CT H(t )HT (t )Cdt+4CT P r4H(t )dt-4CT P r2H(t )dt+ CTP r H(t )dt.

2 Jo Jo Jo Jo

Let

v(t) = S:h(t')dt'

then, using Eq.(8) we get
111

J = -CT DC + CT P[4v( -) -4v( -) + v(1)].
2 4 2

(26)

The boundary conditions in Eq.(24) can be expressed in terms of hybrid functions as

CTH(O)=O, CTH(1) = 0. (27)

We now minimize Eq.(26) subject to Eq.(27) using

technique. Suppose

the Lagrange multiplier

J* =J +A1CTH(0)+A2CTH(1),

where A) and A2 are the two multipliers. Using Eq.(16) we get

af 1 1
- = DC +P[4v(- )-4v(- )+ v(1)] + A1H(0) + A2H(1) = 0,ac 4 2

(28)

for N = 2, r = 2, we have
1

[

-1 1 1

]

T

v(-)= 0,01-,01-,01-,010,0 ,
4 2n 4 2n
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1

[

1

]

T

v(2) = 0,010,0 '2,0 I0,0 10,0 ,

[

1 1

]

T

v(1) = 0,010,01-,-10,0 I0,0 .
.22

The computational results for N = 2,r = 2 together with the exact solutionx( t) are

given in table (2).

Table 2. Estimated and exact values ofx(t).

5. Conclusion

In the present study, the hybrid functions, which are the combinations of block-pulse

functions, and Hartley functions are used to solve variational problems. The problem

has been reduced to a problem of solving a system of algebraic equations. The

integration of the cross product of two hybrid function vectors is a diagonal matrix,

hence making hybrid functions computationally very attractive.

t Exact Hybrid functions N=2, r = 2

0 0 0

0.1 0.005 0.00512

0.2 0.02 0.02014

0.3 0.04 0.04012

0.4 0.035 0.03499

0.5 0 -0.00007

0.6 -0.045 -0.04512

0.7 -0.08 -0.08001

0.8 -0.105 -0.10477

0.9 -0.12 -0.12012

1 -0.125 -0.12015
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