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On Weak McCoy Rings
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Abstract
In this note we introduce the notion of weak McCoy rings as a generalization of McCoy
rings, and investigate their properties. Also we show that, if R is a semi-commutative ring,

then R is weak McCoy if and only if R[x] is weak McCoy.

1. Introduction

Throughout this paper, all rings are associative with identity. For a commutative ring

R, McCoy [10] obtained the following result: If f(x)g(x) =0 for some non-zero poly-
nomials f(x), g(x)e R[x], then f(x)c = 0for some non-zeroc € R. According to Nielsen
[12], a ring R is called right McCoy whenever polynomials f(x), g(x)e R[x]—{0}
satisfy f(x)g(x) =0, there exists anon-zero r€ R such that f(x)r =0. Left McCoy
rings are defined similarly. If a ring is both left and right McCoy, we say that the ring is
a McCoy ring. It is well known that commutative rings are always McCoy rings [10],
but it is not true for non-commutative rings (see [12]).

Recall that'aring R is called:
reduced if a>=0=a=0,forallae R,
reversible ifab=0= ba =0, foralla,be R,

symmetric if abc =0= acb =0, forall a,b,ce R,

semi-commutative if ab=0= aRb =0, forall a,be R.

The following implications hold:

2000 Mathematics Subject Classification: 16N40, 16U80
Keywords: Semi-commutative ring, McCoy ring, Polynomial ring, Reversible ring, Matrix ring,

Classical quotient ring
Received 5 Nov. 2008 Revised 19 Oct. 2009

eb_hashemi@yahoo.com

49



On Weak McCoy Rings E. Hashemi

reduced = symmetric = reversible = semi-commutative.
Reversible rings are McCoy rings by [12]. But the converse is not true; there exists a
non-reversible McCoy ring (see [12]).
Motivated by the above, as a generalization of McCoy rings, in this paper we
introduce the notion of weak McCoy rings and investigate their properties and extend

several known results relating to McCoy rings to a general setting.
For aring R, we denote by nil(R) the set of all nilpotent elements of R, by N.(R)
the prime radical of R and by M, (R), U,(R) and L, (R) the mXn matrix ring over

R, the nxXn upper and lower triangular matrix rings over R respectively.

2. On Weak McCoy rings
Definition2.1. We say R is a weak McCoy ring if f(x)g(x)e nil(R[x]) implies
f(x)ce nil(R[x]), for some non-zeroce R, where f(x) and g(x) are non-zero

polynomials in R[x].

Remark 2.2. Since ab is nilpotent if and only if ba is nilpotent in a ring, hence the

definition of weak McCoy rings is left-right symmetric.

Proposition 2.3. McCoy rings are weak McCoy.

Proof. Let R be a McCoy ring and f(x)g(x)€ nil(R[x]) for non-zero polynomials
f(x), g(x) e R[x]. Then there exists m,n>1, such that (f(x)g(x))" = (g(x) f(x))" =0,
and (f(x)g(x)" ", (g(x)f(x)"" #0.If f(x)g(x)=0 org(x)f(x)=0, then the result
follows from the definition of McCoy rings. Assume f(x)g(x)# 0+ g(x)f(x) and
0=(f(x)g(x)" = f()(g)f(x)... f(x)g(x)) = f(x)h(x).

If hix)=gx)f(x)...f(x)g(x)#0, then f(x)c=0 for some non-zero ce R, since
R is McCoy.

Let /(x) = g(x)(f(0)g(x)... f(0)g(x) = g()(f(0)g(x)"" =0.Since (f(x)g(x))"" #0
and R is McCoy, there exists 0#d e R such that g(x)d =0. Therefore f(x)c=0 or
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g(x)d =0 for some non-zero c¢,d € R. Hence f(x)ce nil(R[x]) or dg(x)e nil(R[x])

for some non-zero c,d € R. Therefore R is weak McCoy.

Proposition 2.4. Let R be a ring. Then U, (R)and L, (R) are weak McCoy for each

nx2.
0 f, - fi
Proof. Clearly U, (R)[x]=U,(R[x]) and for each , _| 0 0 .. fo|_ . (R[x])
0 0 0 0
Jo Jo oo Ju
A" =0. Let 0xA=| | féz . Ja e U, (R[x]). Then
O 0 ... f,
0 1 17 [0 g, ... g, 0 1 1Y
00 1 o o0 .. 0O 0 ... 1
A = . Eon and A . =0. Hence
00 0 0O o0 .. 0 0O 0 0 O

U,(R) is weak McCoy. By a similar argument one can show that L (R) is weak

McCoy.
o > . R M| .
Proposition 2.5. Let Rand § be rings and M a bimodule. Then {0 s } is a weak

McCoy ring.

Proof. Similarly, as used in Proposition 2.4 one can prove it.

The following example shows that U, (R) and M (R) are neither left nor right

McCoy for some n=>2.

Example 2.6. Let R be a ring. We show that U,(R) and M ,(R) are neither right nor

1 00 0] [O-10 O
0 00 0 O O O O
left McCoy. Let f(x)= + x and
0 01 0 O 0O 0 -1
0 00 0] O O O O
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0 0 0O 01 0O
g(x)= 0 100 + 0000 xeU,(R)[x]cM,(R)[x]. Then f(x)g(x)=0.
0 0 0O 0 0 01 o
0 0 01 0 0 0O
1000 Ay Gy Gz Ay
Iff(x)A:O,forsomeAzlal.jJeM4(R),then 0= 000 0A= 0 0 00
0010 Ay Az Gz Ay
00 00O 0O 0 0 O
0 -1 0 0 Tly Ty Tly Ty
0O 0 0 O 0 0 0 0
and 0= A= .Hence A=0 and U,(R)
0 0 0 -1 TAy Ty T4y Ty
0O 0 0 O 0 0 0 0

and M ,(R) are not right McCoy. If Bg(x)=0 for some Be M ,(R), then by a similar

way as above, we can show B =0. Therefore U,(R) and M ,(R) are not left McCoy.

Definition 2.7. A ring R is called right Ore if given a,be R with b regular there exist
a,,b, € R with b, regular such that ab, =ba,. It is well-known that R is a right Ore ring

if and only if the classical right quotient ring of R exists. We use C(R) to denote the

set of all regular elements inR .

Theorem 2.8. Let R bea right Ore ring with its classical right quotient ring Q. If R

is weak McCoy then Q is weak McCoy.

Proof. Let 0# F(x) = Zm:a,.u—‘x" and 0% G(x) = iij—le with a,,b; € R,u,ve C(R)
i=0 J=0

such that F(x)G(x) € nil(Q[x]).

Casel. F(x)G(x)=0 or G(x)F(x)=0. Assume that F(x)G(x)=0. Since R is right

1

Ore, there exists bj'e R and u, € C(R) such that u‘lbj =bj'u1_ for j=1,...,n. Let

f(x)= iai x'and g(x) = ibj'x" .Then f(x)g(x)=0.Since R is weak McCoy, there exists

0#ce R with f(x)ce nil(R[x]) c nil(Q[x]). Hence F(x)uc= f(x)u 'uc= f(x)ce nil(Q[x]).
If G(x)F(x)=0,then by a similar argument we can show that G(x)vd € nil(Q[x]) for

some non-zero d € R.
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Case2. F(x)G(x)#0and G(x)F(x)#0. Since F(x)G(x) € nil(Q[x]), there exists n>2
such that (F(x)G(x))" =0 and (F(x)G(x))"" #0. Let (F(x)G(x))" = F(x)H(x). If

H(x)#0, then by a similar argument as above there exists a€ C(R), r€ R such that
F(x)are nil(Q[x]). Now assume H(x)=Gx)F(x)G(x)...F(x)G(x)=0. Since

n-1

(F(x)G(x))"" #0 and R is weak McCoy, then by Case 1, there exists Se C(R) ,

s€ R such that G(x)fs =0. Therefore Q is weak McCoy.

According to Bell [2], a ring R is called semi-commutative if ab =0 implies
aRb =0. We say an ideal [ is a semi-commutative ideal, if R/ is a semi-commutative

ring.

Lemma 2.9. Let R be a semi-commutative ring. If c,c,---c, =0 for some c, € R, then

¢iRe,Rey-+-Re, =0.

Proof. By induction, let ¢ «-1 =c, (c,. Then c¢,c,*:-c 4 =0 and by induction assumption,
we have 0= ¢,Rc,Rc, - Rc 1-1 = c;Rc,Req4+ -+ Re, ¢, - Hence, for all xe ¢,Rc,Rey -+ Rey 4,

we have xc, =0. It follows by hypothesis that xRc, =0. Thus c¢,Rc,Rc,---Rc, =0, as

desired.

Lemma 2.10 (4, Lemma 2.5). Let R be a semi-commutative ring. Then nil(R) is a

semi-commutative ideal of R.

Proof. Let a,b € nil(R).Then a" =0=5b" for some m,n >0. Each term of the expansion

of (a+b)"" has the form x:=(a"b’)---(a" b’ )where i ,j € NU{Q. Since

n m n
(i + j) + G+ jo) F oot Gt + Jopenst) = D+ D j, =m+n+1, either D i >n or
r=1 s=1 r=1

dYizm I Zn:i, >n,then a"a®---a" =0.Thus (a"b”)---(a"b’) =0, by Lemma

s=1 r=1

2.9. Ifiir <n, then il > m. Thus b/p7% ... pi»wt =0and so(a"b”)--- (a1 b’ )=0,
r=1

s=1

by Lemma 2.9. Hence (a+b)"""' =0.
Now suppose that a" =0 and re R. Then (ar)" =0=(ra)", by Lemma 2.9. Thus

nil(R) is an ideal of R.
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Since R/nil(R) is a reduced ring, hence it is a semi-commutative ring. Therefore

nil(R) is a semi-commutative ideal of R.

Lemma 2.11. Let R be a semi-commutative ring. Then nil(R[x]) = nil(R)[x].

Proof. Let f(x)=a,+...+a,x" € nil(R[x]). Then f(x)* =0, for some integer
k >0. Hence ank =0, and that a, € nil(R). There exists g(x),h(x)e R[x] such that
ff =(a, +...+a, x"" +a,g(x)+h(x)a,. Since nil(R)[x] is an ideal of R[x] and
a,g(x),h(x)a,, f(x)" € nil(R)[x], we have (a,+..+a, x"")" e nil(R)[x]. Hence
an_lk € nil(R) and that a,_, € nil(R). Continuing this process yields a,,..,a, € nil(R).
Therefore nil(R[x]) < nil(R)[x].

Now, let f(x) =a, +....+a,x" € nil(R)[x]. Then a," =0, for 'some positive integer
m;. Letk =m,+-+m, +1. Then(f(x)* =3 (a," (a,x)"™ - (a,x")")-+(ay" (a,0)™ - (a,x")"),
where j +.-+i =1, for r=1,--k and 0<i_<1. Each coefficient of f(x)" is a sum
of such elements 7= ( (a,)™ -+ (a,)™ )*--((a,)™ --- (a,)"), where iy, +---+i, =1.

It can be easily checked that there exists. a; € {a,,--,a,} such that i, +---+i, =2m,.
Since a," =0 andR is “semi-commutative, »=0. Thus(f(x))* =0 and

t

nil(R)[x] < nil(R[x]) . Therefore nil(R[x]) = nil(R)[x].

Lemma 2.12.Let R be a semi-commutative ring. Then nil(R[x][y]) = nil(R[x])[y].

Proof. By Lemma 2.11, nil(R[x]) is an ideal of R[x]. Since R[x]/nil(R[x]) is a
reduced ring, hence nil(R[x]) is a semi-commutative ideal of R[x], and that
nil (R[xD[y] € nil (R[x][y]) .

m Di
Now, let F(y)=Y_ f.y" € nil(R[x][y]), where f, =) a, x* € R[x].Then F(y)" =0,
i=0

s=0
for some positive integers n. As in the proof of [1], let k = nZdeg f;» where the
degree is as polynomial in x and the degree of zero polynomial is taken to be 0. Then
(F(x*))" =0 and the set of coefficients of F(x*) is equal to the set of all coefficients

of f;, 0<i<m.Hence by Lemma 2.11, a ;€ nil(R) forall i, j and that f; € nil(R[x]),

for each i. Thus F(y)e nil(R[x])[y]. Therefore nil(R[x][y]) =nil(R[x])[y].
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If R is semi-commutative, then R[x] may not be semi-commutative, by [5,

Example 2]). Here we will show that if R is semi-commutative, then R is weak

McCoy if and only if R[x] is weak McCoy.

Theorem 2.13. If R is a semi-commutative ring, then R[x] is a weak McCoy ring if

and only if R is weak McCoy.

Proof. Suppose that R is a weak McCoy ring. Let F(1)=)_ fit', G(1)=) g t’ be
=0

i=0

Pi
non-zero polynomials in R[x][¢] such that F(t)G(t) € nil(R[x][t]), where f, = Z:aisx‘Y ,

s=0
9j
g; = ;bﬁx’ € R[x]. As in the proof of [1], let k = Zdegﬁ +Zdeggj , where the

degree is as polynomial in x and the degree of zero polynomial is taken to be 0. Then

F(x") = ifix”‘ ,G(x*) = Zn:gjxjk € R[x], and the set of coefficients of the F(x") is
i=0 j=0

(respectively G(x")) equal to the set of all coefficients of f,, 0<i<m (respectively
g;» 0<j<n). Since (F()G(t))” =0, for some p=>1, and x commutes with
elements of R, (F(x*)G(x"))” =0. Since R is weak McCoy, there is 0 # re R such
that F(x*)re nil(R[x]) and a,re nil(R), fire nil(R[x])for 0<i<m, 0<s<p, by
Lemma 2.11. Hence F(t)re nil(R[x][t]), by Lemma 2.12. Therefore R[x] is weak
McCoy.

Now suppose R[x] is a weak McCoy ring and f(¢)g(¢) € nil(R[t]) < nil(R[x][t]). Since
R[x] is weak McCoy, there exists 0# h(x)e R[x] such that f(#)h(x)e nil(R[x][t]).
Let h(x)=a,+...4+ax"€R[x] (a,#0). Then  f(t)a, < nil(R[t]), since

(FORX) =(f®Oay) +kx+...+k, x™ with k,,....k, € R[t]. Therefore R is weak

McCoy.

Theorem 2.14. Let R be aring and A a multiplicatively closed subset of R consisting
of central regular elements. Then R is weak McCoy if and only if AR is weak
McCoy.
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Proof. If R isis a weak McCoy ring, then by a similar way as used in Theorem 2.8, one
can show that A™'R is weak McCoy.

Conversely, let AR be a weak McCoy ring. Let f(x)= Zaixi and g(x)=Y b, x’
=0

i=0
be non-zero polynomials of R[x] such that f(x)g(x)e nil(R[x]). Since AR is weak
McCoy, fx)(ca")enil(A'R)[x])for  some  non-zerocar' € A'R.  Thus
f(x)ce nil(R[x]) and R is weak McCoy.

Corollary 2.15. Let R be aring. Then R[x] is weak McCoy if and only if R[x,x™'] is
weak McCoy.
Proof. Clearly A ={l,x,x°,....} is a multiplicatively closed subset of R[x] consisting of

central regular elements and A"'R[x]= R[x,x'].. Hencethe proof follows from

Theorem 2.14.

Theorem 2.16. The classes of weak McCoy rings are closed under direct limits.

Proof. Let A={R;,c;} be a direct system of weak McCoy rings R, for i€ I and ring
homomorphisms «; : R, — R, “for each i < j with ¢, (1)=1, where I is a directed
partially ordered set. Let R =lim R, be the direct limit of A with /,:R, - R and
o, =C,. We show that R is weak McCoy ring. Leta,be R. Then
a="1,(a,), bzfj(bj) for some i,je I and there is ke I such that i<k, j<k.
Define a+b =/l (,(a)+a; ;) and ab="!, (a,;(a)a,b;)), where a,(q,),
&, (b;)e R, . Then R forms a ring with 0=/,(0) and 1=/,(1). Let f,ge R[x] be
non-zero polynomials such that fg € nil(R[x]). There is ke I such that f,ge R, [x].
Hence fg € nil(R,[x]). Since R, is weak McCoy, there exists 0#c, € R, such

that fc, € nil(R,[x]). If c=/,(c,), then fce nil(R[x])with non-zero c. Therefore R

is weak McCoy.

Proposition 2.17. (1) Let R be a ring. If there exists a non-zero ideal / of R such that
I[x] < nil(R[x]), then R is weak McCoy.

56



On Weak McCoy Rings E. Hashemi

(2) Every non-semiprime ring is weak McCoy.

(3) Let R be a ring with a non-zero nilpotent ideal. Then Mat, (R) (n=2) is weak
McCoy.

Proof. (1) Let 0# f € R[x].If fe I[x], then fre nil(R[x]) forall re R.If f¢ I[x]
then fse I[x] < nil(R[x])for all non-zerose I . Thus R is weak McCoy.
(2) Let R be aring with N, (R) #0. Since0# N..(R)[x] = N.(R[x]) € nil(R[x]), R is

weak McCoy by (1).
(3) Since Mat,(R) is non-semiprime, hence by (1) Mat, (R) is weak McCoy.
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