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1. Background  

In the middle of 19
th
 century when the first concept of 

cell death was introduced, nobody knew that 

molecular science field would be changed by this 

theory. Approximately 100 years later, the paradigm 

of regulated cell death was described. After a while, 

an unknown regulated cell death was observed in 

animal cells, and named apoptosis. For many 

decades, scientists and researchers considered 

necrosis an accidental and uncontrolled cell death 

which placed in a specific category against apoptosis 

(Vandenabeele et al., 2010). In the 1990s, the piece 

of evidence confirmed noticeable role of receptor 

interacting protein kinase-1 (RIP1) and RIP3 in cell 

death (Hsu et al., 1996; Sun et al., 1999). Moreover, 

scientists revealed that RIP1 mediates caspase 

independent cell death (Holler et al., 2000). In 2003, 

the term 'programmed necrosis' was introduced in 

scientific literature (Chan et al., 2003). Two years 

later, a group of researchers in Harvard University 

discovered a new form of nonapoptotic cell death 

inhibited by necrostatin-1 (Nec-1); thereby calling this 

nonapoptotic cell death 'necroptosis' (Degterev et al.,  

2005). 

 There are two main types of necrosis, regulated and 

unregulated. The morphological characteristics of 

cells under regulated/unregulated necrosis are 

identical, including rounding of the cell, increasing cell 

volume (oncosis), swelling of organelles, lysosomal 

membrane permeabilization, plasma membrane 

discontinuity and permeability, mild chromatin 

condensation and intact nuclei (Proskuryakov et al., 

2003; Dunai et al., 2011). Several types of regulated 

necrosis are emerging quickly and necroptosis is the 

well-defined form of them (Table 1). 

Many articles provide us with information about 

pivotal role of cell compartments including 

mitochondria (Zhang et al., 2009; Maeda and Fadeel, 

2014; Shulga and Pastorino, 2016), endoplasmic 

reticulum (Rizzi et al., 2014; Saveljeva et al., 2015), 
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Abstract 

Necroptosis, as a novel concept, has been recently introduced in scientific 

literature. Much of our knowledge about necroptosis comes from ligation of tumor 

necrosis factor-α to its receptor, TNF receptor 1. Receptor-interacting protein 

kinase 1, receptor-interacting protein kinase 3 and its substrate, the pseudokinase 

mixed lineage kinase domain-like protein, have been comprehensively studied as 

influential components of this process. Emerging pioneering evidence suggests that 

many molecules, organelles and mechanisms are involved in necroptosis pathway. 

The aim of this review is presentation of molecular mechanisms of necroptosis in 

three phases including initiation, regulation and execution of necroptosis. Moreover, 

this review will summarize unprecedented insights into the contribution of various 

organelles and cell compartments such as mitochondria, endoplasmic reticulum, 

nucleus, lysosomes and Golgi apparatus in necroptosis pathway. 
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nucleus (Kaku et al., 2015) and etc. in necroptosis 

pathway. Here, in an attempt to integrate the 

evidence, we have classified the role of cell 

compartments in necroptosis pathway following a 

brief review of important molecular mechanisms of 

necroptosis. 

2. Molecular mechanisms 

of necroptosis  

2. 1 Necroptosis initiation 

Regarding history of necroptosis, death receptors 

(DRs) play the key role in necroptosis recognition 

story. Among death ligands, tumor necrosis factor-α 

(TNF-α) is a pleiotropic cytokine that induces the 

expression of some genes and orchestrates 

inflammatory responses through TNF receptor 1 

(TNFR1) (Mc Guire et al., 2011) (Fig. 1). In addition 

to TNF-α, necroptosis can be triggered by other death 

ligands like Fas ligand (FasL) and TNF-related 

apoptosis-inducing ligand (TRAIL). TNF-α signaling 

leads to death-inducing complexes while FasL and 

TRAIL binding to their receptors results in death-

inducing signalling complex (DISC) formation. 

However, in both conditions, some key molecules 

determine cell's destiny to apoptosis or necroptosis 

(Pasparakis and Vandenabeele, 2015).  Lack of 

caspase-8, as a vital molecule in death-inducing 

complexes and DISC, sensitizes Jurkat T cells to 

necroptosis induced by TNF, FasL and TRAIL (Holler 

et al., 2000). In another category of necroptosis 

inducers, Toll-like receptors (TLRs) trigger 

necroptosis via pathogen-associated molecular 

patterns like lipopolysaccharide (Li et al., 2016). 

Increased level of cytokines following activated TLRs 

and their downstream events as necroptosis initiators 

are drawing more attention recently. Other stimuli 

including (but are not restricted to) T cell receptor 

stimulation (Ch'en et al., 2008), interferons through 

IFN-α receptor type I (IFNAR) (McComb et al., 2014) 

and oxidative stress (Chtourou et al., 2015; Hanus et 

al., 2015; Zhang et al., 2016) could also induce 

necroptosis pathway.  

 

2. 2 Necroptosis regulation 

In 1996, an article in Immunity journal reported that 

TNFR1 recruits RIP1 in the TNF signaling cascades 

Table1: Various types of regulated necrosis 

Regulated Necrosis Regulatory factors Execution factors 

Necroptosis
*
 

RIP1 
RIP3 

MLKL, Na
+
 and Ca

2+
 channels and H2O 

pore formation 

Parthanatos
&
 PARP1 

PAR synthesis, NAD
+
 and ATP 

depletion 

Ferroptosis
#
 GPX4 ROS and Fe

2+
 

Pyroptosis
†
 caspase-1 inflammation 

MPT-mediated 
regulated necrosis

•
 

CypD Ca
2+

 

RIP, receptor-interacting serine/threonine-protein kinase; PARP1, poly (ADP ribose) polymerase 1; GPX4, glutathione 
peroxidase 4; CypD, Cyclophilin D; MLKL, mixed lineage kinase like; NAD

+
, nicotinamide adenine dinucleotide; ATP, 

adenosine 3-phosphate; ROS, reactive oxygen species; 

* 
Necroptosis is an identified form of regulated necrosis, Na

+
 and Ca

2+
 influx and changes in osmotic pressure are 

indications of cells under necroptosis (Jouan-Lanhouet et al., 2014).    
   
&
DNA damage causes PARP-1 overactivation; this enzyme is originally characterized by its role in DNA-repair 

mechanisms, which leads to poly (ADP-ribose) polymer synthesis and accumulation. PARP-1 overactivation diminishes 
cellular NAD

+
 and ATP that eventually results in necrotic cell death (Fatokun et al., 2014).  

 

#This iron-dependent cell death recognized by loss of activity of the lipid repair enzyme, GPX4, and subsequent 
accumulation of lipid peroxidation products and ROS (Xie et al., 2016).  
 

†Pyroptosis occurs after caspase-1 activation which results in the maturation of pro-inflammatory cytokines like IL-1β and 
ultimate cell lysis (Aki et al., 2015). 
 

•CYPD is the only established constituent of the permeability transition pore complex, and is related to mitochondrial 
permeability transition (MPT)-mediated regulated necrosis (Pasparakis and Vandenabeele, 2015). 
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which resulted in a scientific discovery; RIP1 is the 

primary molecule to regulate necroptosis (Hsu et al., 

1996). About three years later, researchers took an 

important step towards characterization of RIP3 and 

revealed that this molecule binds RIP, and their 

interaction is recruited by the TNFR1 signaling 

complex (Sun et al., 1999). RIP3 contains an N-

terminal kinase domain and a C-terminal RIP 

Fig.1. Molecular mechanism of necroptosis; initiation, regulation and execution. Necroptosis/programmed necrosis is 

induced by many factors ranging from ligands of death receptors to oxidative stress. A couple of kinases are main regulators 

of necroptosis; RIPK1 (receptor interacting protein kinase-1) and RIPK3. They exert their roles by connection to other 

molecules, and their phosphorylation/dephosphorylation could influence cell destination. MLKL (mixed-lineage kinase 

domain-like) and its downstream events are momentous executioners of necroptosis pathway which lead to plasma 

membrane rupture and ultimately cell death. In addition to molecules and events role in necroptosis pathway, role of 

mitochondria (A), endoplasmic reticulum (B), nucleus (C) and lysosome (D) in this pathway are considerable important. 

TNF-α (tumor necrosis factor-α), TNFR1 (TNF receptor 1), TRAIL (TNF-related apoptosis-inducing ligand), FasL (Fas 

ligand), DISC (death-inducing signalling complex), TLRs (Toll-like receptors), LPS (lipopolysaccharide), IFNAR (interferon 

alpha receptor) FADD (Fas-associated death domain), TRADD (TNFR1-associated death domain protein), DAI (DNA-

dependent activator of interferon regulatory factors), TRIF (Toll/IL-1 receptor (TIR) domain-containing adaptor protein 

inducing interferon (IFN)-β), IAP (inhibitor of apoptosis), CYLD (cylindromatosis), GLUL (glutamate-ammonia ligase), GLUD 

(glutamate dehydrogenase), TRPM7 (transient receptor potential melastatin related 7), PIPs (phosphatidylinositol 

phosphates), ROS (reactive oxygen species), ATP (adenosine triphosphate), MPTP (mitochondrial permeability transition 

pore), CypD (cyclophilin D), C1QBP (Component 1, q Subcomponent Binding Protein), Drp1 (Dynamin-related protein 1), 

UPR (unfolded protein response), CHOP (C/EBP-homologous protein), ERO1β (endoplasmic reticulum oxidoreductase 1 

beta), MNNG (1-methyl-3-nitro-1-nitroso-guanidine), tAIF (truncated AIF) 
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homotypic interaction motif (RHIM). RHIM on RIP3 

and RIP1 mediates a large amyloid-like structure and 

necroptosis occurs by virtue of this communication 

(Fig. 1) (Sun et al., 2002; Li et al., 2012; Chan et al., 

2015). Various necroptosis regulators might be 

involved when necroptosis pathway is induced by 

specific molecules. In death-induced complexes and 

DISC formation some molecules such as caspase-8, 

Fas-associated death domain (FADD) and TNFR1-

associated death domain protein have determinative 

roles. Activation and inactivation of these molecules 

might change the ways, in which cells decide to 

suicide. Caspase-8 cleavage inhibits RIP1 and RIP3 

phosphorylation, and under this condition apoptosis 

will be executed while these molecules mediate 

necroptosis when caspase-8 is blocked (Zhou and 

Yuan, 2014). Caspase-8 and FADD deficiency in 

mouse embryonic fibroblasts (MEFs) leads to 

progressive RIP1–RIP3 necrosome formation via 

both type I (α/β) and type II (γ) interferons (IFNs) 

(Thapa et al., 2013). In RIP1 independent 

necroptosis, a particular type of necroptosis, viral 

double-stranded DNA is recognized by DNA-

dependent activator of interferon regulatory factors 

(DAI). DAI through its RHIM domain interacts with 

RIPK3, then induces the formation of the necrosome 

and triggers RIP1-independent RIP3-dependent 

necroptosis (Upton et al., 2012). Another important 

molecule in necroptosis regulation is TRIF (Toll/IL-1 

receptor (TIR) domain-containing adaptor protein 

inducing IFN-β), which contains a RHIM-domain, 

allowing communication with RIPK1 and RIPK3 and 

then necrosome formation (Kaiser et al., 2013; 

Pasparakis and Vandenabeele, 2015). Although RIP1 

and RIP3 kinase activity contribute to regulation of 

necroptosis, deubiquitination and ubiquitination of 

these proteins could also control this pathway. RIP1 

deubiquitination by cylindromatosis promotes 

necroptosis while cellular inhibitor of apoptosis 1 & 2 

directly ubiquitinate RIP1 and it has been 

demonstrated that ubiquitinated RIP1 associates with 

the cell survival (Bertrand et al., 2008; Welz et al., 

2011). On the other hand, a negative regulator like 

A20 blocks RIP3 ubiquitination and rescues cells 

from necroptosis (Gurung et al., 2015).   

 

2. 3 Necroptosis execution 

In the effort to look for novel molecules involved in 

necroptosis execution, mixed-lineage kinase domain-

like (MLKL) pseudokinase was recognized as a 

substrate of RIP3. This pseudokinase is an essential 

component of the necroptosis cell death pathway. 

Phosphorylation of RIPK3 on serine 227, leads to 

MLKL phosphorylation on threonine 357 and serine 

358 which is the critical step for necroptosis 

execution. MLKL contains a C-terminal pseudokinase 

domain that suppresses the executioner function of 

the N-terminal. Phosphorylation of the N-terminal 

domain results in conformational change. 

Conformational change leads to MLKL 

oligomerization (Tri/Tetra), membrane localization 

and ultimately membrane permeabilization which 

induces cell death. Some crucial regulators 

considered as proteins X1–X4 control MLKL 

activation; X1, conformational change, X2, 

oligomerization, X3, membrane translocation and X4, 

permeabilization (Fig. 1) (Sun et al., 2012; Tanzer et 

al., 2016). The oligomerization of MLKL disrupts the 

plasma membrane through the transient receptor 

potential melastatin related 7 (TRPM7)-mediated 

calcium influx. TRPM was known as a non-voltage-

sensitive cation channel. MLKL-mediated Ca
2+

 influx 

triggers plasma membrane damage (Cai et al., 2014). 

Besides Ca
2+

 influx, intracellular sodium 

concentration increases during necroptosis. Sodium 

augmentation would disturb the osmotic homeostasis 

and facilitate the osmosis mediated rupture of the 

membrane. MLKL complex automatically or through 

other membrane proteins enhances sodium influx. 

Furthermore, some amino acids on the surface of N-

terminal enable MLKL to connect to 

phosphatidylinositol phosphates (PIPs) and MLKL 

connection to PIPs acts to form pores (Fig. 1). The 

augmented intracellular sodium concentration 

amplifies osmotic pressure, leading to water influx by 

assembled pores. These events eventually lead to 

cell swelling and plasma membrane rupture. This 

process has been recently recognized as a crucial 

step for necroptosis execution (Chen et al., 2014b; 

Dondelinger et al., 2014). Moreover, it has been 

shown that generation of reactive oxygen species 

(ROS) is one of the most effective downstream 

events of MLKL activation during necroptosis (Zhao 

et al., 2012). In addition to oncosis and ROS 

formation, alteration of adenosine triphosphate (ATP) 

level is the other common downstream event that 

necrotic cells share. RIP1–RIP3 necroptosome 

triggers glycolysis and glutaminolysis in downstream 
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which enhances bioenergetics and decreases ATP 

levels by mitochondria (Vandenabeele et al., 2010). 

Glycolysis is dependent on NAD
+
, and NAD

+
 

reduction makes cell consume ATP to replete the 

NAD
+
 level, and this situation leads to energy failure 

and cell suicide. On the other hand, some 

mitochondrial related enzymes like glutamate-

ammonia ligase (GLUL) and glutamate 

dehydrogenase (GLUD) have vital functions for the 

use of glutamate or glutamine as substrates for ATP 

production. GLUL catalyzes glutamate to produce 

glutamine transferred into the mitochondria and 

converted to glutamate to function as an energy 

substrate. Then, GLUD converts glutamate to α-

ketoglutarate. So, increased activity of these 

enzymes exacerbates ATP depletion, leading to 

impaired cellular viability (Devalaraja-Narashimha 

and Padanilam, 2009; Nikseresht et al., 2015).  

Taken together, initiation, regulation and execution of 

necroptosis are crucial steps to regulate/manipulate 

programed necrosis. In Figure 1, some possible 

molecular events that happen in a necroptotic cell 

have been shown. In this schematic figure, role of 

some cellular organelles is also noticeable. Their 

roles will be described in five categories: 

mitochondria, endoplasmic reticulum, nucleus, 

lysosome and Golgi apparatus.        

 

3. Mitochondria 

Mitochondria are multifunction organelles, which are 

responsible for aerobic respiration. Disruption of 

mitochondrial function is the occasion of cell death. 

Mitochondria are crucial modulators of apoptosis 

through release of pro- and anti-apoptotic factors in 

the intrinsic pathway of apoptosis (Jain et al., 2013). 

Some evidence suggest that mitochondria are not 

involved in necroptosis pathway, and this organelle 

may be dispensable for this type of regulated 

necrosis; yet, various studies have implicated 

mitochondrial dysfunction as a key event in 

necroptosis (Marshall and Baines, 2014). The 

communication of RIP3 with MLKL makes 

RIP1/RIP3/MLKL complex translocate to the 

mitochondrial membrane (Chen et al., 2013). 

Countless molecules and events have been proposed 

to encompass in necroptosis pathway, and these 

mediators exert mitochondrial effects on cell fate 

under various stresses. Here, we point up some 

important molecules and events related to 

mitochondria and their roles in necroptosis.  

 

3.1 ROS  

ROS may in fact be primarily known potent molecule 

to trigger necroptosis. It has been shown that 

alterations of oxidative status lead to ROS generation 

by damaged mitochondria (Shindo et al., 2013). 

Stimulation of ROS formation in T-47D cell's 

mitochondria causes necroptosis cell death 

(Shahsavari et al., 2015). Mitochondrial dysfunction 

contributes to necroptotic execution through 

excessive ROS production (Tait et al., 2014). Based 

on a recent study, in some cell lines including L929 

and RAW 264.7, mitochondrial ROS but not cytosolic 

ROS is an essential factor in TNFα-induced cell death 

(Ardestani et al., 2013). Moreover, mitochondrial 

ROS generation as a result of severe endoplasmic 

reticulum stress is associated with necroptosis 

induction (Ma et al., 2016). Some researchers 

described RIPK1 activation, mitochondrial 

dysfunction and eventually ROS accumulation as a 

chain of events following necroptosis initiators 

administration (Thapa et al., 2011; Ye et al., 2012). It 

has been shown that mitochondrial complex I is the 

source of ROS generation in response to 

neoalbaconol. Neoalbaconol is a necroptosis initiator 

in some cancer cell lines. This molecule has been 

verified as an activator of ROS and RIPK3 but not 

RIPK1 (Yu et al., 2015). However, some studies 

assume that ROS is not an obligatory effector for 

necroptosis. They point out the role of ROS as a cell 

type specific mediator in necroptosis pathway (He et 

al., 2009; Moquin and Chan, 2010; Wu et al., 2015). 

In an article published in 2015, ROS inhibition was 

proposed as a trigger of necroptosis in TRAIL-

induced necroptosis in human pancreatic cancer cells 

(Zhang et al., 2015). Irrespective of ROS source and 

cell types, ROS is a potent molecule in necroptosis 

initiation, regulation and execution.   

 

3. 2 MPTP 

Mitochondrial permeability transition pore (MPTP) is a 

potential mitochondrial mediator of necroptosis and 

may present a link between ROS generation and 

disruption of ATP production. The MPTP is a large, 

nonspecific channel that leads to a loss of the 

mitochondrial transmembrane potential and 

mitochondrial depolarization. Moreover, opening of 

the MPTP is associated with failure of oxidative 
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phosphorylation, production of ROS, and swelling 

and rupture of the organelle (Halestrap, 2009; 

Baines, 2010). ROS and Ca
2+

 increase the possibility 

of MPTP opening, while adenine nucleotides 

including ADP and ATP inhibit pore formation. 

Decrease of ATP level by itself is a possible 

mechanism to open MTPT and influences 

mitochondrial transmembrane potential. ATP 

synthase physically interacts with cyclophilin D 

(CypD). CypD is a protein which is present in the 

mitochondrial matrix and regulates MPTP (Giorgio et 

al., 2009; Elrod and Molkentin, 2013). Responding to 

various insults, including oxidative stress and Ca
2+

 

overload, CypD facilitates mitochondrial permeability 

transition (Kroemer et al., 2007). Mice with declined 

CypD displayed reduction in infarct size after acute 

ischemia and reperfusion; this may address CypD as 

a remarkable molecule in cell death (Schinzel et al., 

2005). In addition to CypD, p53 as a principal stress 

sensor is a key mediator of pore opening by oxidative 

stress. This protein interacts with CypD and 

mitochondrial p53-CypD axis induces necrosis cell 

death in mouse and human cells (Vaseva et al., 

2012). Component 1, q subcomponent binding 

protein (C1QBP) is another related molecule to 

control MPTP opening. Knockdown of C1QBP 

sensitizes mitochondria to MPTP opening while 

overexpression of this molecule attenuates ROS-

induction of the MPTP and cellular necrosis. So, 

C1QBP belongs to MPTP negative regulators 

category (McGee and Baines, 2011). It is clear that 

RIP1, RIP3 and MLKL axis is the fundamental 

effector of necroptotic cell death but it is unknown 

how they might connect to the MPTP. Based on 

evidence, necroptosis stimuli obviously amplify MLKL 

protein level in the mitochondria. Necroptosis also 

brings about a reduction in the myeloid cell leukemia 

1 (Mcl-1). Mcl-1 is an anti-apoptotic Bcl-2 family 

member that causes mitochondrial dysfunction when 

removed. MLKL translocation to the mitochondria, 

matrix Mcl-1 depletion and MPTP opening lead to 

mitochondrial dysfunction. These are probably the 

main events in cell death through necroptosis (Karch 

et al., 2015). It has been shown that inhibition of 

MPTP could partially attenuate necroptotic related 

markers (Fakharnia et al., 2017). The executive roles 

of mitochondrial influential factors including MPTP 

and CypD in necroptosis have also been questioned 

and were described in distinct pathways (Ch'en et al., 

2011).  

 

3. 3 PGAM5 

The mitochondrial phosphatase PGAM5 governs 

cellular oxidative stress through binding to the kelch 

ECH associating protein 1-nuclear factor-E2-related 

factor 2 (Keap1-Nrf2) complex (Lo and Hannink, 

2008). This phosphatase indirectly promotes Bcl-XL 

degradation and sensitizes cells to apoptosis (Lo and 

Hannink, 2006). PGAM5 also promotes mitophagy, a 

cellular process that eradicates damaged 

mitochondria (Chen et al., 2014a). PGAM5 provides 

two splice variants, PGAM5L (long form) and 

PGAM5S (short form). Similar to apoptosis, 

necroptosis can also be initiated by two types of 

signals, extrinsic and intrinsic'. RIP1, RIP3, and MLKL 

are responsible for the extrinsic pathway while 

isoforms of PGAM5 function in the intrinsic 

necroptosis pathway. The role of this 32 KD 

mitochondrial membrane protein in necroptosis may 

be confusing. It was first introduced as an anchor of 

RIP1-RIP3-MLKL complex on mitochondria and a 

downstream of RIP1/RIP3 to mediate necroptosis 

(Wang et al., 2012;  Belizario et al., 2015). However, 

a recent study indicates that PGAM5 functions 

independent of RIPK3 to promote inflammasome 

activation. They elucidate that PGAM5 is not a 

necessary element for necroptosis while it has a 

critical role in processing of pro–IL-1β and 

inflammation (Moriwaki et al., 2016). On the other 

hand, necroptotic stimulation enhances RIP1/RIP3 

complex on the mitochondria during genetic depletion 

of PGAM5; it could demonstrate that PGAM5 has 

insufficient effect on RIP1/RIP3 function. In addition, 

the cytoprotective mechanisms of PGAM5 against 

necroptosis have been proved. PGAM5 may in fact 

be a necroptosis protective factor, both in mice and 

MEFs. PGAM5 inhibits necroptosis through PINK1- 

mediated mitophagy (Lu et al., 2016). Mitophagy is a 

necessary process to preserve intracellular 

mitochondria homeostasis. This process also 

decreases augmented ROS and diminishes necrotic 

cell death (Kubli and Gustafsson, 2012).   

 

3. 4 Drp1  

Mitochondrial morphology is controlled by a balance 

of fusion and fission. Mitochondrial fission is 

regulated by Dynamin-related protein 1 (Drp1). Drp1 

is primarily a cytoplasmic protein, and following 
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activation forms ring-like multimers and translocates 

to the mitochondria (Smirnova et al., 2001; Otera and 

Mihara, 2011). It has been suggested that the 

phosphorylation of Drp1 at Ser637 is an important 

regulatory modification (Chang and Blackstone, 

2007). Since mitochondrial fission has been 

implicated in cell death, cell destination could be 

influenced by Drp1 activity (Yu et al., 2008; Dubois et 

al., 2016; Oettinghaus et al., 2016). Although it is 

indefinable how mitochondrial fission promotes 

necroptosis, some findings show that following RIP3 

phosphorylation PGAM5S activates Drp1 through 

dephosphorylation of the inhibitory Ser637 site of 

Drp1. In other words, PGAM5 dephosphorylates and 

triggers Drp1's GTPase activity that facilitates 

mitochondrial fission and consequent necroptosis 

(Kanamaru et al., 2012; Wang et al., 2012). TNF-α 

stimulation and ATP depletion enhances the protein 

expression level of Drp1 significantly, while 

necroptosis inhibition or Drp1-knockdown rescues 

cells from damage. This evidence indicates that 

necroptosis inhibition may protect cell, most likely 

through a mechanism dependent on Drp1 (Zhang et 

al., 2013). Although Drp1 has been described as a 

required molecule in necroptosis pathway, some 

other findings demonstrate that dephosphorylation of 

Drp1 by PGAM5 and activation of Drp1 is not 

obligatory for caspase-independent cell death. 

Indeed, necroptosis caused by RIP3 requires MLKL 

but not Drp1 (Moujalled et al., 2014).  

All the studies described above rely on mitochondria 

as a pleotropic player in execution of necroptosis 

pathway (Fig. 1A). However, they have been 

challenged by other findings which suggest 

mitochondria may in fact be dispensable for 

necroptosis (Marshall and Baines, 2014). 

 

4. Endoplasmic reticulum 

From many decades ago, it was understood that the 

endoplasmic reticulum (ER) is responsible for 

synthesis, folding and maturation of proteins. 

Disturbance of ER homeostasis is capable of 

accumulating misfolded proteins and results in a 

stress response known as unfolded protein response 

(UPR) which orchestrates the recovery of ER 

functions. UPR signaling has two different aspects; 

this process is involved in either promoting cellular 

survival or inducing cell death. Indeed, mild stress 

activates the pro-survival adaptation response 

module. However, in severe and prolonged ER 

stress; the UPR is in short supply to renovate 

homeostasis, and pro-death responses are activated 

(Clarke et al., 2012; Hoozemans and Scheper, 2012). 

ER stress is associated with abundant 

pathophysiological conditions, including ischemia and 

neurodegenerative diseases (Szegezdi et al., 2006). 

UPR and ER stress involvement in the extrinsic 

pathway of apoptosis have been rarely reported; 

however, it has been suggested that overexpression 

of ER stress markers results in Bax protein 

translocation to the mitochondria, and then 

permeabilization of the outer mitochondrial 

membrane and ultimately execution of the intrinsic 

pathway of apoptosis (Oyadomari and Mori, 2004; 

Deniaud et al., 2008; Hetz, 2012). Apoptosis is not 

the only regulated cell death that occurs under ER 

stress. The role of ER stress to trigger necroptosis 

has been recently questioned. It is becoming 

increasingly clear that ER has a specific role in 

necroptosis pathway and it has been demonstrated 

that ER stress is capable of initiating both regulated 

cell death modalities, apoptosis and necroptosis. It 

has been approved that ER stress participates in 

necroptosis through activation of the RIPK1–RIPK3–

MLKL pathway (Iurlaro and Munoz-Pinedo, 2015). 

However, the detail of ER stress involvement in 

induction of necroptosis remains as an open 

question.  

 

4.1 ER stress and necroptosis 

Early swelling and vacuolization of the intracellular 

lumens of the endoplasmic reticulum and 

mitochondria as programmed necrosis characteristics 

were established in electron microscopy studies 

(Pasupuleti et al., 2013). ER stress affects 

mitochondrial metabolism and triggers cell death 

through necroptosis. Activation of the pronecrotic 

C/EBP-homologous protein (CHOP)-UPR pathway 

leads to expression of endoplasmic reticulum 

oxidoreductase 1beta (ERO1β), an enzyme to 

produce ROS during UPR stress. Overexpression of 

ERO1β results in ROS formation by ER. Increased 

ROS from two different sources, ER and 

mitochondria, brings about DNA damage and finally 

necroptosis (Coustry et al., 2012).  On the other 

hand, when MLKL is phosphorylated by RIPK3, 

necrosome formation has been found to translocate 

to mitochondrially associated endoplasmic reticulum 
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membranes (Chen et al., 2013). It is worth 

mentioning that whether or not translocation is 

required for necroptosis remains unknown. In an 

electron microscopic study, it has been reported that 

in an injured spinal cord microglia, MLKL 

immunoreactivity is detectable remarkably on ER. 

Similar to MLKL, many RIP3 immunoreactivities are 

also observed on ER. These data endorse possible 

contribution of ER in the necroptosis of 

microglia/macrophages following spinal cord injury. 

Moreover, ER stress suppression by an ER stress 

inhibitor like 4-phenylbutyrate (4-PBA) significantly 

diminishes augmentation of necroptosis markers, 

RIP3 and MLKL (Fan et al., 2015). 

 

4.2 Necroptosis inhibition and ER stress 

It has been shown that ER stress is able to induce 

necroptosis. All compounds which induce ER stress 

can also initiate necroptosis pathway, demonstrating 

a direct link between ER stress and necroptosis. 

Supporting to this, it has been shown that Nec-1 

administration protects cells from ER stress 

cytotoxicity. In addition, MLKL functions as an 

effector of ER stress-induced necroptosis (Saveljeva 

et al., 2015). It has been established that, based on 

context, necroptosis pathway may be activated 

following c-Jun N-terminal kinase (JNK) activation. 

ER stress stimulates JNK activation and 

consequently necroptotic neuronal cell death. ER 

stress inhibitors including 4-PBA and tangeretin and 

necroptosis inhibitors like Nec-1 as well as RIPK1 

siRNA successfully attenuate phospho-JNK. So, it 

could be deduced that both ER stress induction and 

RIP1-RIP3 complex activation are main steps toward 

activation of JNK signaling (Oshima et al., 2016). In 

another study, in cells treated by pravastatin, an ER 

stress suppressor, various ER stress markers such 

as glucose-regulated protein 78 (GRP78), activating 

transcription factor (ATF)-6 and CHOP were reduced. 

Interestingly, gene expression of RIPK1 and RIPK3 

were also down-regulated. Moreover, when 

necroptosis was repressed by Nec-1, the protein 

levels of the ER stress markers were also attenuated 

(Zhao et al., 2016). In a recent study, it has been 

demonstrated that cell toxicity induced by gefitinib, an 

autophagy inducer, collaborates with augmentation of 

ER stress-related genes including GRP78 and 

CHOP. However, inhibition of necroptosis in 

presence of Nec-1 could partially but significantly 

decline cell toxicity (Mukai et al., 2016). Regarding 

these reports, a crosstalk between ER stress and 

necroptosis might be acceptable. 

Although ER stress and its role in necroptosis have 

been reviewed in some articles (Fig. 1B), there is 

evidence against role of ER in necroptosis. For 

instance, ATF4 as a transcription factor regulates 

multiple genes for homeostasis maintenance under 

ER stress condition. ATF4 mediates two different 

forms of cell death, apoptosis and necrosis. 

Intriguingly, necrosis induced by ATF4 is not similar 

to necroptosis (Leon-Annicchiarico et al., 2015). 

 

5. Nucleus 

The nucleus is the first organelle to be discovered 

many years ago. Nuclei remain intact and have been 

detected throughout necroptosis pathway 

(Pasparakis and Vandenabeele, 2015). Independent 

role of nucleus in regulation and execution of 

necroptosis is not to be expected, however, the 

pathway could be affected by this organelle (Fig. 1C). 

In a recent study, it has been reported that following 

ischemic/reperfusion injury, nuclear translocation of 

RIP3 takes place throughout necroptosis while RIP1 

is only detectable in the cytoplasm. These data 

suggest that the formation of RIP1–RIP3 complex 

could be ignored for RIP3 function in the nucleus. 

Interestingly, Nec-1 could attenuate the upregulation 

and nuclear translocation of RIP3 in CA1 neurons 

(Yin et al., 2015). In another assessment, subsequent 

to MLKL phosphorylation, its location in cells at 

different times was evaluated; the results indicate that 

MLKL translocation to the nucleus with RIPK1 and 

RIPK3 occurs prior to cell death. In fact, stimulation of 

necroptosis causes nuclear translocation of MLKL. 

Mutant MLKL blocks translocation of RIPK1 and 

RIPK3, indicating that the translocation of these two 

protein kinases are influenced by activated MLKL. It 

is noticeable that MLKL after oligomerization has two 

different destinations for translocation, plasma 

membrane and nucleus, both supporting necroptosis 

pathway. Nevertheless, the certain role of 

oligomerized MLKL in the nucleus is not clear (Yoon 

et al., 2016).   

 

5.1 AIF mediated necroptosis 

Another occasion in which nuclei play crucial role to 

promote necroptosis is apoptosis-inducing factor 

(AIF) mediated necroptosis. AIF is a pleotropic 
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protein that plays a vital role in mitochondrial 

respiration machinery. On the other hand, this protein 

is particularly recognized for caspase-independent 

necroptosis induction. AIF is cleaved and released 

from mitochondria to the cytosol. In programmed cell 

death, it is mainly known for translocating from the 

cytosol to the nucleus, where it induces 

chromatinolysis. Intriguingly, necroptosis and AIF 

have been associated in neuronal excitotoxicity and 

AIF release could be controlled by RIP1 inhibition 

(Delavallee et al., 2011; Baritaud et al., 2012). DNA 

damage is another trigger for necroptosis. DNA-

alkylating agents like 1-methyl-3-nitro-1-nitroso-

guanidine (MNNG) are well known to induce 

necroptosis as a consequence of DNA damage. In 

addition to RIP1 and RIP3, the PARP-1 pathway is 

stimulated by MNNG induced-programmed necrosis, 

however, in TNF-induced necroptosis PARP-1 is not 

a key mediator and suppression of the PARP-1 

pathway has no effect on this process. Both Nec-1 

administration and genetic suppression of RIP1 

prevent MNNG-induced necroptosis (Baritaud et al., 

2012; Cabon et al., 2012; Sosna et al., 2014). In 

MNNG-induced caspase-independent necroptosis, 

MNNG breaks DNA double-strand. The DNA damage 

provokes PARP-1 activation which results in the 

release of the necroptotic effector truncated AIF 

(tAIF) from the mitochondria to the cytosol; tAIF 

makes a connection with CypA to generate a DNA-

degrading complex that stimulates AIF-mediated 

necroptosis as a consequence of chromatinolysis 

(Baritaud et al., 2012). In another study, it has been 

shown that following PARP-1 activation, MNNG-

induced DNA damage depletes NAD
+
 and ATP and 

activates calpains in target cells as well. Calpains 

cleave BID that is a link between calpains and Bax. 

Smaller form of BID, tBID is capable of activating 

Bax. Activated Bax facilitates release of tAIF from 

damaged mitochondria to the cytosol and then 

nucleus. So, despite pivotal role of Bax in apoptosis, 

this protein exerts a potent influence over necroptosis 

pathway. The anti-apoptotic protein, Bcl2, prevents 

Bax and disturbs AIF release (Cabon et al., 2012). 

 

6. Lysosomes 

Lysosomes have been associated with 

unregulated/regulated cell death. In a lethal damage, 

lysosomal rupture could be considered as a 

noteworthy early event. Release of high 

concentrations of lysosomal hydrolytic enzymes into 

the cytosol result in unregulated necrosis, while 

partial and sequential permeabilization cause 

programmed cell death (Bursch, 2001; Guicciardi et 

al., 2004). Apoptotic cascade can initiate by a wide 

variety of events ranging from lysosomal proteases 

leakage (Vancompernolle et al., 1998) to the 

mitochondrial release of cytochrome c (Roberg, 

2001). Although enhanced generation of oxidants, 

mitochondrial dysfunction and ATP depletion are 

main events during necroptosis, activation of cysteine 

protease calpains and cathepsins, and then 

lysosomal rupture have been established as major 

cascades of this process (Golstein and Kroemer, 

2007).  To date, various factors that are capable of 

bringing about the lysosomal permeabilization were 

identified, but their contribution to necroptosis 

depends on two main issues; first, the way the cell 

death is induced, second, the cell type. Most likely, 

the well-known factor of the lysosomal damage, ROS, 

affects lysosomal membrane integrity. Some 

experimental results also suggest that antioxidants 

are able to reduce cell death through stabilizing 

lysosomal membrane (Persson et al., 2003; 

Guicciardi et al., 2004). The calpain-mediated 

lysosomal rupture has been suggested in 

programmed necrosis. This has been confirmed by 

various experimental paradigms ranging from C. 

elegans to humans (Yamashima and Oikawa, 2009).  

Calpains and cathepsins have been accepted to be 

involved in regulation of programmed necrosis. It has 

been clearly shown that neuronal programmed 

necrosis might occur partly by the release of 

cathepsin-B as a consequence of lysosomal rupture 

(Wang et al., 2011). Intriguingly, specific inhibitor of 

necroptosis, Nec-1, prevents the release of 

cathepsin-B from lysosomes after ischemic 

reperfusion injury (Yin et al., 2015). On the other 

hand, it has been shown that administration of Tag7, 

an innate immunity protein, forms a stable cytotoxic 

complex with the heat shock protein 70. This complex 

initiates programmed cell death by interacting with 

the TNFR1. Following TNFR1 stimulation and then 

RIP1 kinase activation, augmented intracellular Са
2+

 

activates calpain in downstream. Activated calpain 

results in the lysosomal membrane permeabilization 

and cathepsins release. These two events lead to 

mitochondrial damage and ROS accumulation, and 

ultimately progression of necroptosis (Yashin et al., 
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2016).  

In addition to lysosomes’ responsibility for the release 

of proteolytic enzymes by virtue of lysosomal 

membrane rupture, autophagy as a self-digesting 

mechanism has been implicated in providing another 

pivotal process for lysosomes. Autophagy is a 

double-edged sword, and its role as a type of cell 

death or a pathway to protect cells is a contentious 

area. Autophagy is distinguishable by the formation of 

autophagosomes which delivers damaged organelles 

or cellular components to lysosomes (Shen and 

Codogno, 2012). Myriad reports demonstrate 

autophagy is both initiator (Dey et al., 2016; Liu et al., 

2016), and inhibitor (Ye et al., 2013) of necroptosis; 

moreover, some documents show no association 

between these two processes (Osborn et al., 2010; 

Button et al., 2016). Hence, finding a clear 

relationship between autophagy and necroptosis is 

positively problematic (Fig. 1D). 

 

7. Golgi apparatus 

The vital role of the Golgi apparatus-complex in the 

transport and processing of proteins that are 

produced by the rough endoplasmic reticulum has 

been studied many years ago (Marsh and Howell, 

2002). Although fragmentation of the Golgi apparatus 

could be a physiological event, it resembles some 

pathological reactions. The Golgi apparatus is 

fragmented or dispersed in a number of human 

degenerative diseases. For instance, in cell and 

animal models of Alzheimer’s disease, following 

enhancement of amyloid beta processing from the 

amyloid precursor protein, Golgi fragmentation 

appears before cell death. Golgi fragmentation is also 

observed several months before the onset of 

paralysis (Gonatas et al., 2006; Ceglia et al., 2015). 

Golgi complex would be supposed as a sensor of 

stress signals in various platforms (Hicks and 

Machamer, 2005). In addition to alterations of Golgi 

complex in response to stress signals, involvement of 

the Golgi complex in apoptosis pathway or necrosis 

was reported. It has been represented that apoptotic 

death receptors are augmented in the Golgi complex 

before transportation to the plasma membrane, 

indicating that the Golgi complex is one of the main 

players in apoptotic signalling. It appears that Golgi 

complex experiences distinctive changes during 

apoptosis and necrosis (Nozawa et al., 2002).  To 

confirm the role of this organelle in necroptosis, it has 

been revealed that cadmium administration induces 

cell death; and prior to detection of any 

cellular/morphological modifications the early 

appearance is Golgi disintegration. In this context, 

Nec-1 can partially alleviate destructive effects of 

cadmium (Krumschnabel et al., 2010). To date, it is 

not clear why and how Golgi complex can influence 

necroptosis pathway.  

Conclusion 

Although necroptotic cells share a recognized 

signaling pathway which occurs in cytosol, role of 

other cell’s organelles is remarkable in this pathway. 

Based on many reports, mitochondria, endoplasmic 

reticulum, nucleus, lysosome and Golgi apparatus 

highly contribute to programmed necrosis. Indeed, 

these organelles are actors of necroptosis scenario in 

cell's scene. 
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