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Dynamics of Space Free-Flying
Robots with Flexible Appendages

A. Ebrahimi!, S. A. A. Moosavian®

A Space Free-Flying Robot (SFFR) includes an actuated base equipped with one
or more manipulators to perform on-orbit missions. Distinct from fized-based
manipulators, the spacecraft (base) of a SFFR responds to dynamic reaction
forces due to manipulator motions. In order to control such a system, it is
essential to consider the dynamic coupling between thesmanipulators and the
base. Explicit dynamics modeling of such systems with flexzible appendages is
developed in this paper. The SFFR is divided into two parts, theimanipulator(s),
and the main base body (spacecraft) that consists of flewible appendages. The
recursive Lagrangian approach is used to describe dynamics model of the
flexible base system. For modeling the multi-manipulator system, a Recursive
Newton-Euler approach is followed. The obtained dynamics model can be
employed either numerically or symbolically. Interacting forces and torques
acting between the manipulators and the main body are also modeled, which
could be used for simulation studies of controller design.

NOMENCLATURE 0?2,0;?,95,? The xgl), ygl), zl(l) rotation components
ny Number of total appendages of link 4, of appendage [
k Vibration in the z, y, or 6, direction éz(f) Joint angle rate of the I*" single arm
mEQ Number of assumed modes for the k" martllplllafoz corresponding to unit
direction of vibration of the i** link of vector v, J,
[*" appendage F, .7 Interaction forces and torques between
0 . ; . the rigid manipulators and their
T; l?osmon of an arbitrary.point on each flexible base
link ¢ _ M, J,C,K Mass, mass moment of inertia,
n Number of #** appendage links translational damping and
Lgl) The length of link i of I** appendage translational stiffness matrices
Mass densit Q Vector of generalized forces and
p J torques applied to the flexible base
A Cross sectional area .
- a, Acceleration vector of the base
E Modulus of elasticity
R w!? Angular velocity vector of the [ single
1,1, Area moment of inertia computed 1 & ! y &
about the z or y axis arm manipulator
G Modulus of rigidity r&ll) Position vector from Oél) to the
J Polar area moment computed about center of mass of the I'" single arm
the neutral axis manipulator
oo Coordinates governing the rotational
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Il(l) Moment of inertia matrix of the [‘*
single arm manipulator

Am Rigid manipulator variable

dp Flexible base generalized coordinates

By, By Controllable rigid manipulator inertia
effects

Cys,Cro Inertia effects of the flexible base

Teo Coordinates governing the translational
motion of the flexible base

Ngry,Ncy  Rigid manipulator coriolis and

centrifugal interaction force matrices

Nrrr,Nc-y Rigid manipulator coriolis and torque
matrices

INTRODUCTION

Dynamics and control of a Space Free-Flying Robot
(SFFR) is a highly challenging subject because of
complicated nonlinear dynamics and dynamics cou-
pling between different parts, [1-3]. Papadopoulos
and Dubowsky have employed a barycentric vector
approach to study kinematics and dynamics of a single-
arm rigid SFFR in free-floating mode, [4]. Taking
the center of mass of the whole system as a repre-
sentative point for the translational motion and using
barycentric vectors, which reflect both geometric con-
figuration and mass distribution of the system, results
in decoupling the total linear and angular motion
from the rest of the equations. This approach was
compared to another one proposed as Direct Path
Method in [5]. It was shown that this new approach
results in a larger number of dynamics equations with
simpler terms with clearer physical meaning. It was
also applied by Moosavian and Papadopoules, [6], to
develop explicit dynamics of a maltiple manipulator
space free-flying robot SFFR with rigid Links based
on Lagrangian formulation. This model has been
successfully employed for model-based control, and
simulation studies of such complicated systems, [7-9].

Yoshida et. al. have studied the problem of impact
dynamics of space robotic. systems that consist of a
rigid manipulator supported by a flexible deployable
structure, [10]. Dynamics and control of such space
robotic systems in the presence of joint flexibility and
with closed kinematic constraints has been developed
in [11]. Ma and Wang have introduced a technique for
impact-contact dynamics simulations of flexible manip-
ulators by order reduction, [12]. The proposed method
first linearizes the contact force model on the right-
hand side of the dynamics equations periodically, and
then determines the linear “stiffness” and “damping”
terms from the linearized contact force model. Finally,
these are combined with the existing structural stiffness
and damping matrices of the associated multibody
system on the left-hand side of the equations. After
such a process, the traditional modal analysis and
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reduction techniques for linear dynamic systems can
be applied to reduce the order of the resulting dynamic
system. Martin et. al. have approximated the dynamics
of a flexible joint manipulator on a free-flying base,
[13]. This model has been employed to minimize
undesirable dynamics and fuel consumption. Similar
approaches have been proposed for optimal and near-
optimal control of flexible spacecraft, [14-18].

Book has developed a recursive Lagrangian ap-
proach for modeling flexible link manipulators, [19].
Describing the position of a point on a flexible link
requires both rigid and elastic coordinates. Since flex-
ible manipulators are distributed parameter systems,
their motion is described by partial differential equa-
tions instead of ordinary differential equations, hence
dynamics modeling can become very challenging. On
the other hand, rigid manipulators are usually modeled
using the same method or/Newton-Euler formulation
introduced by Sciavicco and Siciliano, [20], and Craig,
[21]. First; acceleration of the center of mass of each
link is computed from the base to the end-effector, then
forces and torques acting on each link and the required
joint torques can be calculated backward.

The main focus of this paper is to develop a
dynamics model of SFFR with flexible appendages.
The system is divided into two parts, the manipulators
and the base (spacecraft), which consists of flexible
appendages. All rigid manipulators and flexible ap-
pendages are attached to a common rigid base. The
very large antennas, solar arrays and multi-link flexible
manipulators can be assumed as flexible appendages To
develop dynamics model of such systems, a recursive
Lagrangian approach and the Newton-Euler formula-
tion are applied. Next, the interaction forces and
torques acting between the rigid manipulators and its
base are studied.

Figure 1. Rigid Body Manipulators Mounted on a Flying
Base with Flexible Appendages.
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DYNAMICS MODELING
The system shown in Figure 1 is a typical rigid
manipulating system mounted on a free-flying base
with flexible appendages. It is assumed that the origin
of an inertial coordinate system is located at the base of
the rigid manipulators; the elastic states of the flexible
appendages affect the rigid manipulators system by
moving its base in Cartesian space. In developing the
equations of motion, these become boundary conditions
on the rotational and translational motion of the first
link of each rigid manipulator that are then propagated
to the other forward links. Then, a backward recursive
procedure is employed to compute interaction forces
and torques.
Basic assumptions in this research work are:

1. Since the manipulators are stationary at the initial
instant, the nonlinear velocity-dependent terms
approximate zero.

2. The elastic deflections are assumed to be small;
hence all inertia submatrices approximate to func-
tions of the joint variables only.

Dynamics Modeling of Flexible Appendages
The base consists of n, multi-link flexible appendages
with practically passive joints. The method chosen
here is a recursive Lagrangian formulation using finite
number of assumed modes, which is applicable to a
flexible arm. The approach described here begins with
assuming an appropriate number of modes to model
the flexibility in each link corresponding to each rigid
degree of freedom, [22-23]. It is assumed that each link
could have a transverse vibration plus.torsion.about the
z-axis and that axial vibration is negligible. Thus, the
total number of equations of motion-and generalized
coordinates, is:

ny N

ZZZ% (1)

=1 1=1 k=1

where n;, is the number of total appendages, n; is the
number of [** appéndage links; k represents vibration
in the z, y, or 6, direction, and m() is the number
of assumed modes for the k:“‘ dlrectlon of vibration
of the i*" link of the I* appendage. The position of
an arbitrary point on each link rgl) is composed of
summations of the assumed mode shapes multiplied by
the generalized coordinates. These definitions are used
to form the kinetic and potential energy of the system.
Then, Lagrange’s equations yields the equations of
motion of the system. The kinetic energy of a point
on the i** link of appendage I, is:

a1V = Lam!V Tr {1V 07, (2)

where dmgl) = pgl) dzgl) is the mass element that one

can integrate over zl(l) from 0 to Lgl). Tr{.} is the

trace operator. Summing over all n(Y) links of all n,
appendages, the system kinetic energy is obtained:

() L(z)
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where L") is thie length of link i of I'* appendage.

The potential energy of the system in a microgravity
environment is due to elastic deformation of the links.
Therefore, it is obtained by computing the potential
energy of an element, then integrating it over the
length of the link; and finally summing over links and
appendages.
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One of the benefits of this method is that as much
detail can be included in the equations of motion as
desired. Now Lagrange’s equations can be used to
derive the equations of motion:

d <8T> or oV _o, (5)

 0g; * 9q;

9q;
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Figure 2. A Space Free-Flying Robot (SFFR) with ng

manipulators.
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Q; is the nonconservative generalized force applied to
the base corresponding to the generalized coordinate ¢;.
These are the interaction forces and torques created
by the rigid manipulators. The generalized forces
are determined based on the virtual work principal
considering the rigid manipulators, or:

OW =F, or+7,.00, (6)
The generalized coordinates q, can be written as:

1 . 2 .
q{ :[(qéz)kvl:lv 7”1)7 ( éz)kvlzlv 7”2)7"'7

l . n .
(Q£2k7Z:17 7nl)7"' 7(Q£1l};)71217 7nnb)]7

k=1,2,3 (7)

The equations of motion are obtained as:

M(qp) b + C(ap) ap + K(ap) ap = Q, (8)
where:
a=-17] ®

is the vector of generalized forces and torques applied
to the flexible base.

Dynamics Modeling of Multiple Rigid
Manipulators and Coupled Equation of Motion
It is assumed that the system consists of n, rigid

manipulators and each manipulator has m,(Ll) links
(Figure 2). All links and joints are rigid, and each
joint has only one DOF. Therefore, the total DOF. of
the manipulators is obtained as:

N, = ng)v (10)
=1

First, assume that n, rigid single link.-manipulators are
mounted on the base. The aceceleration of the center of
mass of the [** arm a&? is.obtained as

al) =a., + u':l(l) x ) + wgl) X (wgl) x i) (11)
where
Ac, = i‘cUg + ycuj + .Z:CUIA€

Wi = (bas0 +03) 8500 +(8ys0 +05)6,5)] +(b20 +68,0)

by = [6$O ,5%0 ,5Z7O]T = the angular acceleration
vector of the base due to flexibility. Also:
if p=s

1,
61’5_{ 0, if p#s

and is called Kronecker delta.
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The interaction forces and torques at the base due
to the single link manipulators are given by:

ny
FIFl = F[(}l?‘)l
=1
(1)

ny

0 -

Tipy = — Z(rgll) X Fl(?l) + le( ) wl( )
=1 =1

!
F) = m\a) (12)
where mgl) is the mass, and Ifl) is moment of inertia

matrix of the [*" single arm manipulator. Then,

to extend the above procedure for multiple-link rigid
manipulators, the Recursive Newton-Euler method is
used, [12]. The algorithm uses forward kinematics
computations, which propagate the velocities and ac-
celerations of each link from the base to the last link.
This is followed by backward kinetics calculations to
obtain the forces and torques acting on each link
starting with-the external forces and torques applied
to the end-effector. It is assumed that the end effectors
of'manipulators’are not in contact with any object, so
the forces and torques applied to the tip of their last
links are zero.

The vector of generalized coordinates for rigid
manipulators system is chosen as:

T T T T T
qm = (q’g’g) 9 qg'rl),) YRR | qE’IZL) YRR | qg'r?a) ) (13)
where q£,2) = (02,0, 0y,0, 6Z7O)T, and

al) =00 = (60,68,....60, )5 1>1 (14)

As mentioned before, the manipulators are as-
sumed to be at rest at the initial instant, so the
nonlinear velocity-dependent terms will be initially
zero. The deflections are assumed small, and hence, all
inertia submatrices are approximated to be functions
of the joint variables only. The interaction forces and
torques due to the rigid manipulators motion can be
written as:

Frr =B¢(qm)dm + N¢(qm, gm)
+ Cr(@m)ids + Ny @by Gms Gm),
717 =Bro(qm)Gm + Nro(@m, Gm)
+ Cro(qm)ds + Nroc(qb, @by Gm, Gm)s
7 =B (gm)4m + Nr(qm, Gm)
+ Cr(gm)ds + Nre(@vs dbs Gms ) (15)

where q,, represents the rigid manipulator variables
and qp represents the flexible base generalized coordi-
nates. By, By, Cy and C( represent inertia effects of
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the rigid manipulators and flexible base, respectively.
By and By are particularly important because they
represent the controllable rigid manipulator inertia
effects. These matrices are not in general symmetric
or positively definite (but the inertia matrix for the
complete coupled system is, of course). The remaining
terms in Eq. (15) represent other nonlinear effects. The
third equation is the typical joint torque equation with
extra coupling terms. Often actuator dynamics or
other effects dominate the manipulator performance,
so this equation could take other forms. However, for
this work it is assumed that the relationship between
the joint actuation torques and joint positions is known
and controllable.

The generalized coordinates of the base, q; can be
written as ¢! = [rc,, 0]7, then the equation of motion
for the base is:

M 0] [, C 0] |7
o R]E el )
K 0 Teo| F.
s -l o
The dynamics of rigid manipulators, interaction
forces and torques, which were introduced in Eq. (9),
appear in this equation. Eq. (16) yields a system
of coupled nonlinear equations for a SFFR system,
where M is mass matrix, J is mass moment of inertia
matrix, C is translational damping matrix, ) is
rotational damping matrix, K is translational stiffness
matrix, K, is rotational stiffness matrix, r., represents
the coordinates governing the translational.motion of
the flexible base, and dy represents the coordinates
governing the rotational motion of the base:

The interaction forces and torques exerted by the
rigid manipulator can be written as:

_él_ {9192] Pf-l
Fp = By(0) (02| +Nrys(8) 61651+ Noys (0 93 ;
103 ] |_9293J LQ?Z,J
[0, 9192-| 610>
Top = Bro(0) 8y + Nigro(6) {6165 |+ Nrro(0) 161651,
A [9293J [9293J

(17)

Here Coriolis and centrifugal effects have been written
separately, where Ng¢, Ncyr, Npro, and Ngro are
rigid manipulator coriolis and centrifugal interaction
matrices (forces, and torques), respectively.

Interaction Forces and Torques Acting

Between the Rigid Manipulators and the Base
In this section the effects of rigid manipulators, or those
terms that are only functions of ¢,,, are investigated.
First, the inertia forces and torques are discussed,

or those generated by accelerating the links of each
rigid manipulator. Next, the nonlinear centrifugal
and coriolis forces and torques are discussed. The
following performance measure provides a quick and
accurate measure of the ability of the [** manipulator
in generating effective interaction forces and torques:

B () BY (¢ (8)

? m m

B @) B (4)

Alternately, by defining:

B, <q£i>>] (198)

BY = N, (
B (g)

the combined ability of the robot to generate interaction

forces and torques may be evaluated as:
B (a) BOD)| (19)

where By and B are inertia-like matrices. These are
important for two reasons. First, the rigid manipu-
lators must have enough inertia to effectively apply
interaction forces and torques to the base. Second,
there are locations in the workspace where these matri-
ces become singular, which in turn presents a problem
since they are inverted in the control scheme. How-
ever, the more important consideration is that these
“inertial singularities” represent physical limitations
in that an inertial force or torque cannot be created
in one or more degrees of freedom. As an example,
consider a three degree of freedom manipulator, Figure
3. By considering the variation of the By matrix
throughout the workspace, a few important features
become apparent. These singularities consist of some of
the kinematic singularities plus additional dynamically
singular configurations. These are driven by the
columns of By when the matrix contains:

1. Linearly dependent columns, which indicate that
the forces created by two or more joints are parallel.
This scenario occurs when the last two joints are
aligned.

T
Figure 3. A three DOF manipulator.
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Figure 4. Force Reaction of a 3 DOF Manipulator on a
Base

Figure 5. Torque Reaction of 3 DOF Manipulator.

2. A column of zeros, which indicates a<ocation in
the workspace where the motion of a.joint cannot
create any interaction forces. This occurs:when the
system center of mass is aligned along an axis of
rotation. These inertial singularities depend on the
location of the center of mass of the system.

In other words, variation of the interaction forces and
torques is affected by the joint space configuration of
the manipulator.

The nonlinear rigid manipulator effects (Ny, N-o)
may become significant in certain workspace regions.
However, with proper choice of vibration control feed-
back gains, the amplitude of the commanded joint mo-
tion can be limited to ensure the inertia effects remain
dominant. Furthermore, under these conditions, the
nonlinear effects can be linearized near an operating
point.

SIMULATION RESULTS
Simulations were implemented in Matlab (V.7) for a
three DOF manipulator mounted on a flying base. The
configuration is shown in Figure 3, with dimensions and
properties as given in Table 1. The resulting equations
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of motion take the form of Eq. (17). It is evident that
for single arm manipulator, [ equals one, and could be
omitted from equations. Using the Recursive Newton-
Euler method, the inertia force matrix By is square and
the variation in force performance, as quantified by the
performance measure in Eq. (17), is shown in Figure 4.

The inertia torque reaction of the three DOF
manipulator can be seen in Figure 5 by evaluating
the torque performance measure defined in Eq. (18).
However, the inertia torques created by accelerating
joints 2 and 3 are always parallel so this evaluation was
made for joints 1 and 2 only. The combined force and
torque reaction of the manipulators can be evaluated
by using Eq. (19). It is important to note that
even if the interaction forces or torques are desirable
independently, having one will always bring the other.
Thus, it becomes important to evaluate the combined
force and torque performance of the manipulator, as
shown in Figure 6:

The interaction forces and torques produced by
the rigid manipulator are given by Eq. (17). In these
equations, the last two terms are nonlinear parts. The
nonlinear rigid motion effects also vary throughout
the workspace. The nonlinear Coriolis and centripetal
effects can be seen in Figures (7-10). There are several
important points to be made. First, the magnitude
of the nonlinear forces is relatively small. In addition,

Table 1. Dimensions and Properties of Rigid Manipulator.

Links
Parameters 0 1 2 3
ai(m) - - 1.50 | 0.80
di(m) 0.15 | 0.15 - -
m;(kg) 1.00 1.00 5.00 3.00
rei(m) - - 0.75 0.40
I,.i(kg-m?) | 0.015 | 0.015 | 0.011 | 0.008
Iyyi(kg—mz) 0.015 0.015 0.011 0.008
Izzi(kg-mZ) 0.007 0.007 0.002 0.001

-

B 5888883

Figure 6. Combined Torque and Force Reaction of 3 DOF
Manipulator.
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Figure 7. Three DOF Manipulator Reaction: Coriolis
Forces.

the coriolis forces are the largest only in regions of poor
inertia performance; so operation in these regions can
be avoided by using the performance index. However,
the centripetal forces become largest around kinematic
singularity regions, while operation around these re-
gions may be necessary for other aspects.

CONCLUSIONS

Explicit dynamics of a space free-flying robot with
flexible appendages were investigated in this paper.
The system was divided into two parts, the ma-
nipulator(s), and the main base body (spacecraft),
which consists of flexible appendages. The recursiye
Lagrangian approach was used to describe .dynam-
ics model of the flexible base system. a Recursive
Newton-Euler approach was employed for.modeling
the multi-manipulator system. The interacting forces
and torques acting between the manipulators and the
main body were also modeled and used for simulation
studies. It was shown by simulation that the magnitude
of the nonlinear forces is relatively small. Also, the
magnitude of Coriolis forces becomes the largest near
regions of small inertial forces, while the centrifugal
forces may become_considerably large in regions that
inertia forces become large. Finally, the centrifugal
torques are largest near to regions of small inertial
torques.
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