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two ways. In the first method, the airfoil is 
oscillated while the flow is steady. In this 
case the dynamic mesh is used. In the second 
method, the oscillatory inlet flow is passing 
on a fixed airfoil.  

In the field of simulating moving boundary flow 
problems, different approaches are found in the 
literature of the art. Shankar and Ide [1] have presented 
an appropriate grid update procedure for small 
displacements of the structure where the speeds of the 
outer boundary points are taken to be zero and the grid 
speeds at any interior point are then obtained by 
interpolating the body value and the zero outer 
boundary value along a constant coordinate line. 
However, this method may result in severe grid 
distortions when the structure experiences large 
displacements. Goswami and Parpia [2] mentioned 
that local grid restructuring methods can be used when 
at each time step, the boundary movement is smaller 
than the minimum mesh size in the domain. In order to 
rectify the high cost of mesh insertion and deletion in 
the previous method, Batina [3] introduced dynamic 
mesh approach. This method employs mesh smoothing 
instead of insertion and deletion of near boundary 
grids. The process of Mesh smoothing is implemented 
until a proper mesh quality, which is based on several 
criteria, is achieved [4]. In order to attain a pattern for 
grid points to satisfy a set of smoothness and 
orthogonality constraints, Nakahashi and Deiwert [5] 
used  the concept of spring coupled with variation 
principles. Levine et al. [6] utilized a similar spring 
analogy to compute the new body conforming grid 
points. Guruswamy [7] introduced a dynamic algebraic 
grid generation scheme in which grid points are 
conformed to the deforming shapes of the structure. 
Lohner [8] proposed the use of Arbitrary Lagrangian-
Eulerian (ALE) formulation as a means to achieve a 
solver that can handle moving frames. However, the 
grid points in ALE formulation had to be renewed 
even in the sheer rigid-body motion problems. 
Additionally, Farhat and Lin [9] introduced a more 
economical approach for transient solution of the aero 
elastic coupled problem with respect to multiple 
moving frames of reference.           

Other approaches to handling moving boundary 
problems are also available. The field velocity method 
(Parameswaran and Baeder, [10], Singh and Baeder, 
[11] and[12], Sitaraman et al. [13], Zhan and Qian, 
[14] and[15]), which adopts the grid speed technique 
to simulate the velocity change of the flow field, has 
been successfully applied to calculating the gust 
response of the airfoil/wing (Harish and Alex [16]; 
Raveh; Raveh et al., [17] and [18], Yang et al., [19]). 
This method is shown to be suitable for computation 
of step change in airfoils. Moreover, the method of 
conventional field velocity is usually used to calculate 
the indicial response by incorporating unsteady flow 

conditions via grid movement in CFD simulations 
(Parameswaran and Baeder, [20](Singh and Baeder, 
[21]). The main privilege of this method is the direct 
calculation of aerodynamic responses to step changes 
in flow conditions. An impulsive change in the angle-
of-attack can be considered as an impulsive 
superposition of a uniform velocity field in the free 
stream. Besides, the magnitude of the indicial change 
for the angle of attack is used for the calculation of the 
magnitude of normal velocity. In this method, the 
necessity of uniform distribution of time step over the 
entire flow domain is guaranteed. In addition, the 
airfoil is not made to pitch. Hence, the influence of 
pure angle-of-attack and pitch rate are decoupled 
efficiently. A similar methodology for simulating 
responses of an airfoil to step changes in pitch rate and 
interaction with vertical gusts also exists. Moreover, 
the field velocity method is also applied for prediction 
of the effects of the trailed vortex wake from the other 
rotor blades in helicopters, compressors or other turbo 
machineries.  A time dependence study illustrates that 
a smooth and accurate solution in time requires the 
consistent evaluation of time metrics in order to satisfy 
the geometric constitutive law (Sitaraman et al., [22]). 

The objective of the present work is to 
investigate the unsteady transonic inviscid and 
viscous flow fields over a pitching or heaving 
NACA0012 airfoil at various angles of attack. A 
pressure based implicit procedure to solve the Euler 
and Navier-Stokes equations is developed in order to 
predict flows around the oscillation airfoil with a 
high resolution scheme. In this process,  
nonorthogonal and non moving mesh with collocated 
finite volume formulation are used. In order to 
simulate the pitching or heaving airfoil, oscillation of 
flow boundary condition is applied. The boundedness 
criteria for this procedure are determined from the 
Normalized Variable Diagram (NVD) scheme. The 

procedure incorporates the k-ε  eddy-viscosity 
turbulence model. The algorithm is then tested for 
inviscid and turbulent transonic aerodynamic flows 
around  an oscillating airfoil. The results of the 
present study are compared with the other existing 
numerical solutions and with the experiment data. 
The comparisons show that the resolution quality of 
the developed algorithm is significant. 

GOVERNING EQUATIONS AND 
DISCRETIZATION 

The basic equations, which describe conservation of 
mass, momentum and scalar quantities, can be 
expressed in Cartesian tensor form as: 
 

(1)      0i
i

u
t x
   

 
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(2)    u
i i j ij i

j

u u u T S
t x
    

 
 

(3)   i i
i

u q S
t x

     
 

 

The stress tensor and scalar flux vector are usually 
represented in terms of basic dependent variable. The 
stress tensor for a Newtonian fluid is: 

(4)

2

3

      
      

k
ij ij

k

ji

j i

u
T P

x

uu

x x

 



 

The scalar flux vector usually given by the 
Fourier-type law is: 

(5)i
i

q
x
     

 

Turbulence is accounted for by adopting k   
turbulence model. The governing equations for these 
quantities are:  

(6)          
   

i k
i i

comp diff

k
u k

t x x

G D

 



 

(7)

 
2

1 2

        

  

j
i i

u
t x x

C G C



 

  

 
 

 

The turbulent viscosity and diffusivity 
coefficients are defined by 

(8)
2

t

k
C  


  

(9)
t t

t




 

    
 

 

and the generation term G in eqs.  0 and  0 is defined by  

(10)
2

3

             
        

ji i

j i j

t

l l
ij

l l

UU U

x x x
G

U U
k

x x



 

 

The term 
compD and 

diff are additional 

contributions to the standard k  model often 
introduced to account for the effects of compressibility 
[23,24]. In this work, the models proposed by Yang et 
al., [23]  are adopted, namely, 

(11)

9

55

1

  

  
 

i
comp

i

t

i i

u
D k

x

p

x x



 
 

 

(12)0diff   

The latter being appropriate for high Reynolds number 
flows, as it is the case here. The values of the 
turbulence model coefficients used in the present work 
are given in Table 1 (Yang et al., [23]). 

Table 1. Values of emperical coefficients in the standard k-ε 
turbulence model 

C1 C2 Cμ σk σε 

1.44 1.92 0.09 1.0 1.3

 
The discretization of the above differential equations 
is carried out using a finite-volume approach. First, 
the solution domain is divided into a finite number of 
discrete volumes or cells, where all variables are 
stored at their geometric centers (see e.g. Fig. 1). The 
equations are then integrated over all the control 
volumes by using the Gaussian theorem. The 
development of the discrete expressions to be 
presented is effected with reference to only one face 
of the control volume, namely, e, for the sake of 
brevity. 

 
 

Figure 1. Finite volume and storage arrangement 
 

For any variable  (which may now also stand 

for the velocity components), the result of the 
integration yields 

(13)

1[( ) ( ) ]   

  

n n
p p e w

n s

I I
t

I I S

   


 

 

(14)( )D
e e p E eI D S      

 

where I(S) is the combined cell-face convection IC 

and diffusion ID fluxes. The diffusion flux is 
approximated by central differences and can be written 
for cell-face e of the control volume in Fig.1, as an 
example, as:  
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where 
eS

 
stands for the cross derivative arising 

from mesh nonorthogonality. The discretization of 
the convective flux, however, requires special 
attention and is the subject of the various schemes 
developed. A representation of the convective flux 
for cell-face e is: 

(15)eeee
c
e FVI   )..(  

The value of the dependent variable e is not 

known and should be estimated using an interpolation 
procedure, from the values at neighboring grid points.

e is determined by the SBIC scheme ( Djavareshkian 

[25]), that it is based on the NVD technique, used for 
interpolation from the nodes E, P and W. So the 
expression can be written as: 

(16)eWEWe  ~
).(   

The functional relationship used in SBIC scheme 

for e
~

 is given by: 

Pe  ~~   if 0 1P Po r      

(17) 

2

( 1)

1
( 1)

P e
e P

P

P e
P

P

x x

K x

x x

K x


   



 
    

  


  


 

if KP  ~0  

P
P

e

P

eP
e x

x

x

xx  ~

1~
1~

1~

~~~







 
5.00  K

if 1
~  PK 

 
where 

 (18)  
P W e W

P e
E W E W

e W P W
e P

E W E W

x x x x
x x

x x x x

   
   

   
 

 
 

 

 
 

The limits on the selection of each value of K  
can be determined in the following way. Obviously the 
lower limit is to keep 0K , which would represent 
switching between upwind and central differencing. 
This should not be favored because; it is essential to 
avoid the abrupt switching between the schemes in 
order to achieve the converged solution. The upper 
limit of K  is 0.5, since it represents the constant 
gradient and there is no need to use anything other 
than central differencing in that case. The value of K
should be kept as low as possible in order to achieve 
the maximum resolution of the scheme. According to 

Eq. (17), if P
~

(or C
~

normalized variable at the 

central node) does not belong to [0,1], the space 
discretization is first order, otherwise the SBIC scheme 

has second order accuracy from the point of view of 
space discretization. The details of how the 
interpolation is made are dealt with([25]); it would 
suffice here to say that the discretized equations 
resulting from each of the approximations take this 
form:  
 

 (19)  
, , ,

. .P P m m
m E W N S

A A S  


   

 
where A(s) are the convection-diffusion 

coefficients. The term 'S  in Eq.  0 contains quantities 

arising from non-orthogonality, numerical dissipation 
terms, external sources, deferred correction terms, and 
( / ) Pt    of the old time-step/iteration level. For 

the momentum equations, it is easy to separate out the 
pressure-gradient source from the convected momentum 
fluxes.  

SOLUTION ALGORITHM 

The set of Eq. (19) is solved for the primitive variable 
(velocity components and energy) together with 
continuity utilizing pressure-based implicit sequential 
solution methods. The technique used is the PISO 
scheme presented herein (Issa, [26]). In this technique, 
the methodology has to be adapted to handle the way 
in which the fluxes are computed in Eqs. (15-18). The 
adapted PISO scheme consists of a predictor and two 
corrector sequence of steps at every iteration. The 
predictor step solves the implicit momentum equation 
using the old pressure field. Thus, for example, for the 
u  component, the momentum predictor stage can be 
written as 

'** )( u
o SpDuHu                                     (20) 

where H contains all terms relating to the 
surrounding nodes and superscripts; while, * and o 
denote intermediate and previous iteration values, 
respectively. Note that the pressure-gradient term now 
written out explicitly, is extruded from the total 
momentum flux by simple subtraction and addition. 
The corrector-step equation can be written as: 

'**** )( uSpDuHu                                     (21) 

Hence, from Eqs. (20) and (21) 

pDuorppDuu   )( ******      (22) 

Now the continuity equation demands that 

  0***  u
t



                                                   (23) 

For compressible flows it is essential to 
account for the effect of change of density on the 
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mass flux as the pressure changes. This is accounted 
for by linearizing the mass fluxes as flows  

 ***** uuuu oo                        
or 

p
dp

d
upDuu oo  )(*****   

(24) 

 
where Eq. (22) is invoked to eliminate δu, and δρ 

is related to δp by the appropriate equation of state. 
Substitution of Eq. (24) into Eq. (23) yields a pressure-
correction equation of the form  

* * * *

*

. . . .

.

P P E E W W N N

S S P

A p A p A p A p

A p S

      

       (25) 

where PS  is the finite difference analog of

)( *uo , which vanishes when the solution is 

converged. The A  coefficients in Eq. (25) take the form 
of (the expression for EA  is given as an example): 

eeee
o

E dp

d
uaDaA ).()~()~( *                             (26) 

where  is a factor the significance of which is to 
be explained subsequently. The mass flux at a cell face 
is computed from nodal values of density and velocity, 

but the cell-face values of o
e and *

eu in Eq. (26) are 

not readily available. To compute those values, 
assumptions concerning the variations of  need to be 

made. In upwinding 1  when u  is positive; 
otherwise it would be zero. Alternatively, in central 
difference formula 2/1 . 

Such assumptions have no influence whatsoever 
on the final solution because they affect only the 
pressure-correction coefficients, and as p  

approaches zero at convergence, the solution is, 
therefore, independent of how those coefficients are 
formulated; however, they do influence the 
convergence behavior.  

The structure of the coefficients in Eq. (25) 
simulates the hyperbolic nature of the equation 
system. Indeed, a closer inspection of expression 
(26) would reveal an upstream bias of the 
coefficients ( A decreases as u  increases), and this 
bias is proportional to the square of the Mach 
number. Also, note that the coefficients reduce 
identically to their incompressible form in the limit 
of zero Mach number. 

In the present work, Crank-Nicolson scheme 
[26] is applied for discretization of time derivative 
with second order accuracy. This option seems to be 
the most obvious as it requires the minimum amount 
of memory storage of the velocity fields (Barton, 
1998). It should be noted that the system of 
equation is solved using biconjugation method. 

BOUNDARY CONDITIONS 

At the inlet of the domain, only three of the four 
variables need to be prescribed: the total 
temperature, the angle of attack, and the total 
pressure. The pressure is obtained by zeroth order 
extrapolation from interior points. At the outlet, 
pressure is fixed. Slip boundary conditions are used 
on the lower and upper walls. In the case of viscous 
flow, the non-slip condition is applied to the airfoil 
surfaces. To account for the steep variations in 
turbulent boundary layers near solid walls, wall 
functions, which define the velocity profile in the 
vicinity of no-slip boundaries, are employed. The 
far-field boundary is set at 30c from the airfoil to 
minimize its undesired effects on the flow 
surrounding and to be in accordance with slip 
boundary conditions. 

RESULTS AND DISCUSSION 

PITCHING PART 

In this section, the results of the inviscid and 
viscous flows over a pitching NACA0012 airfoil 
along its quarter chord axis are presented. The 
simulations are performed at a higher Reynolds 
number. In particular, we aim to validate the 
simulation with the help of the existing experiment 
results of a pitching airfoil, and also study the lift 
and drag characteristics of this airfoil. The steady 
state solutions are used as initial conditions for 
time-marching calculations. Fig. 2 provides an 
illustration of pure-pitch motion for an airfoil with a 
mean angle of attack of αm. The parameters of 
motion and flow field are also described in Table 2. 
The airfoil is forced into an oscillation around an 
axis located at the quarter-chord. The angle of 
attack is specified as:   
  

(27)     sinm pt t      

 

 

Figure 2. Pure pitch definition 
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Table 2. Pure pitch motion parameters 

κ M∞ αm (deg.) αp (deg.) c 

0.0814 0.755 0.016 2.51 1.0 

 
The free stream velocities for unsteady 

computations are set at uinlet=u∞cos(α(t)) and 

vinlet=u∞sin(α(t)). An H-type mesh is generated to 

model the airfoil and the surrounding flow. The 
schematic of this grid which is used in the present 
simulation is shown in Fig. 4. The grid dependence 
test for Navier-Stokes Equation on the NACA0012 

airfoil at M∞= 0.755, α= -1.8˚ is indicated in Fig.5. Three 

different mesh sizes are considered: 27680, 57950 and 
115960 cells and each simulation emerges from its fully 
converged solution. Thus the mesh of 57980 cells is 
selected as a baseline mesh for further analyses. Figes. 6 
(a)-(c) compare the computed viscous case surface 
pressure distribution with the experimental data [27] on 
NACA0012 with M∞=0.755, αm=0.016˚, αp=2.51˚, 
k=0.0814 for two angles of attacks. As it can be realized 
from these results, there is quite a good agreement 
between the present method and the measurement of 
Landon [27]. These comparisons show that the solutions 
using oscillating boundary condition method enjoy an 
acceptable prediction. 
 
 

 
Figure 4. Part of the H grid 

 

 

Figure 5. Grid dependency results for NACA0012, M∞= 

0.755, α= -1.8˚ 

 

a) α(t)=-0.54˚ b) Pressure coefficient distribution α(t)= )=-0.54˚ 
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c) α(t)=2.34˚ d) Pressure coefficient distribution α(t)= 2.34˚ 

Figure 6. Pressure distribution on NACA0012, M∞=0.755, αm=0.016˚, αp=2.51˚, k=0.0814 

 

 
The computed variation of the lift coefficient 

versus angle of attack for inviscid and viscous flows 
during the third cycle is compared with that of Uzun 
[28] and Landon [27] in Fig. 7 (a) and (b). The 
existence of this variation loop is the result of 
induced velocities, which result in different lift 
coefficients between the up and downstrokes. For the 
presented viscous case, the turbulence quantities 
were specified at inlet to correspond to 0.008 
turbulence intensity and a dissipation length scale of 
10% of the airfoil chord. The value of K  in SBIC 
scheme for this case is 0.3. Fig. 7(a) shows the 
computed variation of lift coefficient versus the angle 
of attack for viscous case which is in close agreement 
with experimental data. Difference between the 

experimental data and numerical simulation results of 
this research can be caused by several factors a) 
solution algorithm, in pressure based algorithm , the 
segregated  method is used to solve discretizated 
equations and the internal and external loop number 
can affect the  results, b) Eddy viscosity models can 
affect unsteady airload hysteresis loops c) 
Experimental data can be the same as combined error, 
and d) In the present work,  non moving mesh is 
employed and in order to simulate a pitching or 
heaving airfoil, oscillation of flow boundary condition 
is applied; but in the experimental test, the airfoil is 

oscillating. Fig. 7 (b) shows the lC versus for 

inviscid case. 

 
 

 
(a) 

 
(b) 

Figure 7. Lift coefficient versus angle of attack for  M∞=0.755, αm=0.016˚, αp=2.51˚, k=0.0814  a) viscous case b) 

invicid case 
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Uzun [28] used a parallel algorithm for the 
solution of unsteady Euler equation on unstructured 
reformatting grids while in this study the non moving 
mesh with oscillation of flow boundary condition is 
applied. It can be seen that neither of these methods 
are in good agreement with the experimental data, 
particularly at the lowest angle of attack. The reason 
for this difference is caused by the lack of 
consideration of viscosity. In other words, the 
viscosity can impact the separated vortex from the 
airfoil and aerodynamic coefficients in an unsteady 
flow. 

The predicted drag coefficients versus the angle 
of attack are illustrated in Fig.8. The upstroke Cd  and 
Cdmin are higher than the downstroke one. This is 
explained by the aerodynamic phase lag, i.e. the strong 
influence of the shed vortices in the wake on the 
bound-airfoil circulation. Details of these unsteady 
(circulatory) effects are described by Leishman [29] 
and Cebeci  et al. [30] in the context of attached 
aerodynamics.In this work, the effect of the airfoil 
amplitude of oscillation on the simulated lift 
coefficients is assessed. The instantaneous LC versus 

 where K=0.0184, M=0.755 on NACA0012 is 
depicted in Fig. 9. As illustrated, the maximum lift 
coefficients increase at higher amplitudes of 
oscillation. Besides, the calculated lift coefficients are 
periodic and resemble harmonic-like patterns. 
Furthermore, increasing the amplitude endues 
significant lead in the LC  results that maxLC  is 

obtained at a lower . This can be attributed to the 
stronger effects of the shed wake and the vertical 
structures on the surrounding fluid in the higher 
amplitudes. 

 

 
Figure 8. Drag coefficient versus angle of attack for viscous 

case at M∞=0.755, αm=0.016˚, αp=2.51˚, k=0.0814 

 
Figure 9. Instantaneous Lift coefficient versus non-

dimensional time M∞=0.755, k=0.0814 

HEAVING PART 

In this section, the results of the viscous flows over a 
Heaving NACA0012 airfoil are indicated. The 
simulations are performed at a higher Reynolds 
number. In particular, we aim to validate the 
simulation with the existing numerical results of a 
heaving airfoil, and study its lift characteristics. The 
steady state solutions at 1° angle of attack are used as 
initial conditions for the time-marching calculations. 
The non-slip boundary condition is applied along the 
airfoil surface. The far-field boundary is also set at 30c 
from the airfoil to minimize its undesired effects on 
the flow surrounding and is accordance with the slip 
boundary conditions. Fig. 10 provides an illustration of 
a pure-heaving motion. The parameters of motion and 
flow field are described in  Table 3. The heaving 
velocity of the sinusoidal motion is given as:  

(28)  ttMtvo 





  

sin.
180

sin.)(  

(29)   



a

th
tvo


 

(30)



U

L
t

 

Figure 10. Pure plunge motion definition, αm=1° 
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Table 3. Pure heaving motion parameters 

κ M∞ c 

0.2 0.8 1.0 
 

The significant point in the simulation of heaving 
airfoil with oscillation boundary condition is to consider 

a lag phase  t . Eq. 28 has been non-dimensionalized 

by the free stream speed of sound a . The free stream 

velocities for unsteady computations are set at uinlet=U∞ 

and vinlet=U∞sin(α(t)).  An H-type mesh is generated to 

model the airfoil and the surrounding flow. The 
schematic of the grid which is used in the present 
simulation is shown in Fig. 4. The computed variation 
of the lift coefficient versus the angle of attack for 
viscous flows during the third cycle is compared with 
that of Uzun [28] and Lin [27] in Fig. 11. For the 
presented viscous case, the turbulence quantities are 
specified at inlet to correspond to 0.008 turbulence 
intensity and a dissipation length scale of 10% of the 
airfoil chord. The value of K  in SBIC scheme for the 
case of validation is 0.05. This figure shows the 
computed variation of lift coefficient versus the angle of 
attack for viscous case, which is in a close agreement 
with the published results. Uzun [27] used dynamic 
mesh with a parallel algorithm for the solution of 
unsteady Euler equation on unstructured reformatting 
grids while in this study a nonmoving mesh with 
oscillation of flow boundary condition is applied. 
Moreover, Lin used multi reference frame for the 
simulation of heaving motions. This comparison shows 
the resolution of these methods is considerable. 
Although the present method is simple and has low cost 
for calculation, the dynamic mesh and the multi 
references of frame method are both time consuming 
and very complicated to develop. Fig. 12 demonstrates 
the effect of SBIC parameter (k) on the lift coefficient at 
α=1°, M=0.8, and κ=0.2 for NACA0012. As it can be 
seen, the value of the different k coefficients does not 
have so much effect on the resolution of the solution. 

 
Figure 11. Lift coefficient distribution for Pure Heaving 

Motion, M=0.8, κ=0.2, NACA0012 

 
Figure 12. Effect of SBIC parameter (k) on Lift coefficient, 

α=1°, M=0.8, κ=0.2, :NACA0012 

Fig.13 shows different flowcharts for Time 
advancement and Table 4 indicates CPU Time 
comparison for different internal and external loop 
iterations. The numbers of iteration to satisfy the 
convergence criteria for the external loops of 
algorithms (a), (b) and (c) are approximately1000, 0 
and 1-2, respectively and these numbers for the 
internal loops of these algorithms are about 0, 20-30 
and 2-3 respectively. As a result, the two algorithms 
(a) and (b) are time consuming, but CPU time for (c) 
method is considerably decreased.  

Table 4. CPU Time comparison for different algorithms 

 Iterative 
Algorithm 

Non-
Iterative 

Algorithm 

presented 
Algorithm 

Internal 
Loop No. 

- 20-30 3-5 

External 
Loop No. 

500 - 2-3 

CPU Time 
(min) 

5000 2000 180 

CONCLUSIONS 

A pressure based implicit procedure to solve the Euler 
and Navier-Stokes equations is developed to predict 
transonic viscous and inviscid flows around the pitching 
and heaving airfoil with a high resolution scheme. In 
order to simulate a moving airfoil, oscillation of flow 
boundary condition is applied. The boundedness criteria 
for this procedure are determined from Normalized 
Variable Diagram (NVD) scheme. The main findings 
can be summarized as follows: (1)- The moving airfoil 
simulation with the oscillation of flow boundary 
condition with fix grid is very simple and has low cost. 
(2)- The grid dependence test with high resolution 
scheme indicates that an acceptable solution can be 
obtained even on a fairly coarse 3-the agreement 
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between numerical and experimental data is 
considerable, and (4)- The CPU time for the presented 

method is considerably reduced. 

 

   

(a) Iterative Algorithm (b) Non-Iterative Algorithm (c) Presented Algorithm 

Figure 13. Different Flowcharts for Time advancement 
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