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model of a physical/dynamic system from the 
observed data. Six key steps are involved in system 
identification [7]; (1) Developing an approximate 
analytical model of structure, (2) Establishingthe 
levels of structural dynamic response which are likely 
to occur using the analytical model as well as 
thecharacteristics of anticipated excitation sources, (3) 
Determining the instrumentation requirements needed 
to sense the motion with prescribed accuracy and 
spatial resolution, (4) Performing experiments and 
recording the data, (5) Applying system identification 
techniques to identify the dynamic characteristics such 
as system matrixes, modal parameters, as well 
asexcitation and input/output noise characteristics, and 
(6)Refiningthe analytical model based on the identified 
results. The traditional identification techniques 
extracting modal parameters from input and output 
data have been well-developed and widely used in 
engineering. However, it is often a demandingtask to 
carry out excitation in the field testing of large 
engineering structures. To obviate such difficulties of 
the traditional techniques, methods of extracting modal 
parameters from structural response data have only 
been deeply investigated during the lastfew decades 
[8].Approximate dynamic programming (ADP) is a 
very effective method for the solution of Discrete-
Time Nonlinear HJB [9]. There are many techniques 
of ADP to solve the cost function and hence the 
optimal control policy [10]. In [11], ADP techniques 
are classified into: heuristic dynamic programming 
(HDP), dual heuristic dynamic programming (DHP), 
action dependent heuristic dynamic programming 
(ADHDP), and action dependent dual heuristic 
dynamic programming (ADDHP).In [12], Liu and Li 
used optimal control for discrete-time HJB. 

In the present studybased onthe idea of HDP, we 
extract a new internal dynamics matrix identification 
method. At first, we introduce the discrete time HJB, 
then, we useheuristic dynamic programming algorithm 
for solving HJB online, and finally introduce two 
neural network parametric structures to approximate 
the optimal cost function and policy. At last, using the 
main results obtained, we extract an estimator for the 
internal dynamics estimation of a discrete linear 
system. 

DISCRETE-TIME HJB EQUATIONS 

Consider an affine dynamic system of the form: ݔାଵ = (ݔ)݂ +  (1)                                    (ݔ)ݑ(ݔ)݃

where ݔ ∈ ܴ ،݂(ݔ) ∈ ܴ   ، (ݔ)݃ ∈ ܴ×and the 

inputݑ ∈ ܴ. 
It is desired to find the control input which 

minimizes the cost function given as (2): ܸ(ݔ) = ∑ ்ܳஶୀݔ ݔ +                             (2)ݑ Rݑ

where ܳ > 0  and  ܴ > 0. 
From Bellman's optimality theory and [13]: ݑ∗(ݔ) = ଵଶ ܴିଵ݃(ݔ)் డ∗(௫ೖశభ)ப௫ೖశభ                                 (3) 

and: ܸ∗(ݔ) = ݔ்ܳݔ ଵସ డ∗(௫ೖశభ)ப௫ೖశభ ்(ݔ)ଵ݃ିܴ  (ݔ)݃ డ∗(௫ೖశభ)ப௫ೖశభ +  (4)                               (ାଵݔ)∗ܸ

This equation reduces to the Ricatti equation in 
the linear quadratic regulator (LQR) instance, which 
can be solved with precision. In the general nonlinear 
case, the HJB cannotbe solved exactly. 

From [9], the value iteration HDPalgorithm for 
solving it is proposed as: ݑ(ݔ) = arg ݉݅݊௨ ൜ݔ்ܳݔ + ݑ ்ܴݑ +ܸ(ݔାଵ) ൠ  = arg ݉݅݊                 ௨{ݔ்ܳݔ + ݑ ்ܴݑ +ܸ(݂(ݔ) + =  {(ݑ(ݔ)݃ ଵଶ ܴିଵ݃(ݔ)் డ(௫ೖశభ)ப௫ೖశభ      

ܸାଵ(ݔ) = ݉݅݊௨{ݔ்ܳݔ + ݑ ்ܴݑ + ܸ(ݔାଵ)} ݔ்ܳݔ= +  

 

(5) 

(ݔ)ݑ ்ܴ(ݔ)ݑ + ܸ(݂(ݔ) +  (6)                 ((ݔ)ݑ(ݔ)݃
subsequently, for solving the equations (5), (6), 

neural network estimation has been proposed as 
follows: ܸ(ݔ) = ∑ ௩ݓ ୀଵ ∅(ݔ) = ௩்ܹ∅(࢞)                      (7) ݑො(ݔ) = ∑ ௨ݓ ெୀଵ (ݔ)ߪ = ௨்ܹ(8)                      (࢞)࣌ 

where ∅(࢞) and (࢞)࣌ are the activation functions 
and ௩ܹ and ௨ܹ are the network weights.  

The updatedlawfor  ௩ܹ  and  ௨ܹis obtained from 
(9), (10) as: 

 ௩ܹାଵ = ቀ ஐ்(ݔ)߶(ݔ)߶ ቁିଵݔ݀    ×  (ݔ)߶ ܸஐ ,(ݔ)߶) ௩ܹ)  (9)    ݔ݀

௨ܹ|ାଵ = ௨ܹ| − ,ݔ)ොݑ 2ܴ)(ݔ)ߪ ߙ (௨|ݓ ்(ݔ)݃+ డ∅(௫ೖశభ)డ(௫ೖశభ) ܹ)்                                       (10) 

where Ω is the training set,ߙ is a positive step 
size, and m is the iteration number of the LMS 
algorithm. 

Assuming the convergence of HDP algorithm for 
a linear system, the last relations show, ܸ(ݔ) and ݑ୧(ݔ) converge to the cost function of the optimal 
control problem and to the corresponding optimal 
control input,respectively. 

The most important feature which is seen in (9) 
and (10) is that ݂(ݔ)isn't is notneeded to update the 
critic neural network weights and this issue makes 
possible the estimation of system inner dynamics 
matrix using composition of heuristic dynamic 
programming control algorithm and neural network. 
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ESTIMATION of INNER DYNAMICS 
MATRIX of DISCRETE-TIME LINEAR 

SYSTEM 

Consider the linear discrete system (for example with 
five states), described as: ݔ(݇ + 1) = (݇)ݔܩ +  (11)                                 (݇)ݑ ܤ 

From LQR method: (ݔ)∗ݑ =  (12)                                                           ݔܮ−
where: ܮ = (ܴ +  (13)                                       ܩ்ܲܤଵି(ܤ்ܲܤ

And P is the symmetric positive definite of below 
Ricatti equation: ܲ = ܩ்ܲܩ + ܳ − ܴ)ܤ்ܲܩ + ଵି(ܤ்ܲܤ  (14) :  ܩ்ܲܤ  ×

and ܸ∗(ݔ) =  (15)                                                         ݔ்ܲݔ
A reasonable selection of activation functions 

vector for cost and control input would be as: ∅(࢞) = 3ݔ2ݔ22ݔ 5ݔ1ݔ     4ݔ1ݔ    3ݔ1ݔ2ݔ1ݔ12ݔ] (ݔ)ହଶ]்  ોݔ     ହݔସݔସଶݔ ହݔଷݔ     ସݔଷݔଷଶݔ  ହݔଶݔ ସݔଶݔ   =  (16)   ܶ[5ݔ4ݔ3ݔ2ݔ1ݔ]

Then, converged weight vectors have the form of: 
 ௩ܹ =   ܶ[௩ଵହݓ௩ଵସݓ௩ଵଷݓ௩ଵଶݓ௩ଵଵݓ௩ଵݓ௩ଽݓ௩଼ݓ  ௩ݓ௩ݓ௩ହݓ௩ସݓ௩ଷݓ௩ଶݓ௩ଵݓ]

୳ܹ =
ۈۈۉ
w୳ଵ.ଵۇ w୳ଵ.ଶ w୳ଵ.ଷ w୳ଵ.ସ w୳ଵ.ହw୳ଶ.ଵ w୳ଶ.ଶ w୳ଶ.ଷ w୳ଶ.ସ w୳ଶ.ହw୳ଷ.ଵ w୳ଷ.ଶ w୳ଷ.ଷ w୳ଷ.ସ w୳ଷ.ହw୳ସ.ଵ w୳ସ.ଶ w୳ସ.ଷ w୳ସ.ସ w୳ସ.ହw୳ହ.ଵ w୳ହ.ଶ w୳ହ.ଷ w୳ହ.ସ w୳ହ.ହۋۋی

ۊ
  

(17) 

and: ܸ∗(ݔ) = ௩்ܹ∅(࢞)  ݑ∗(ݔ) = ௨்ܹ(18)  (࢞)࣌ 

As explained in section 3, HDP algorithm 
converges to the cost function of the optimal control 
problem and to the corresponding optimal control 
input, respectively. i.e. ܸ∗(ݔ) = (ݔ)∗ݑ  (ݔ)∗ܸ =  (19)  (ݔ)∗ݑ

 
Therefore: 
 ௩்ܹ∅(࢞) =   ݔ்ܲݔ

௨்ܹ(࢞)࣌ =  (20)     ݔܮ−

We define: 

ܹ =
ۈۉ
ۇۈ w୴ଵ 0.5w୴ଶ 0.5w୴ଷ 0.5w୴ସ 0.5w୴ହ0.5w୴ଶ w୴ 0.5w୴ 0.5w୴଼ 0.5w୴ଽ0.5w୴ଷ 0.5w୴ w୴ଵ 0.5w୴ଵଵ 0.5w୴ଵଶ0.5w୴ସ 0.5w୴଼ 0.5w୴ଵଵ w୴ଵଷ 0.5w୴ଵସ0.5w୴ହ 0.5w୴ଽ 0.5w୴ଵଶ 0.5w୴ଵସ w୴ଵହ ۋی

 (21)         ۊۋ

Then, (16-21) results: ܲ = ܮ  ܹ = − ௨்ܹ  
(22) 

Using (13), (22): − ௨்ܹ = {ܴ +  (23)                              ܩଵBܹି{ܤ்ܹܤ

If the number of states is equal to control inputs, 
i.e. size(G)=size(B) and B is nonsingular, (constrains 
of proposed estimation algorithm), then, there is a 
unique solution for G from (23): ܩ = {ܹିଵି்ܤଵܴ + {ܤ ௨்ܹ                          (24) 

That can be simplified to: ܩ = {ܹିଵି்ܤଵܴ + {ܤ ௨்ܹ                                              (25) 
A block-diagram of the proposed estimation 

method is shown in Fig. 2. 

Figure 2. Block-diagram of the proposed estimation method 

ESTIMATION of INNER DYNAMICS 
MATRIX of GIMBALED INERTIAL 

NAVIGATION SYSTEM 

Gyroscopes random error is defined as a stable 
stochastic process with autocorrelation function as 
follows [1]: ܩ = {ܹିଵି்ܤଵܴ + {ܤ ௨்ܹ                                    (26) 

where ߪ is the standard deviation of random error 
of gyroscopes, which is known, and ߤ is the damping 
coefficient. 

Differential equation of gyroscope error is as: ܦపሶ + ܦߤ = ඥ2ߪଶߤ.  (27)                                           ݓ
Where ݓ is a white noise with ࣨ(0,1). 
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Dynamic equations of inertial navigation system 
considering gyroscopes disturbances are [14]: ݔሶ(ݐ) = (ݐ)ݔܩ +  (28)                                           (ݐ)ݓܦ

where: 

ܩ = ۈۉ
ۇ 0 ௗߗ 0 0 ௗߗ−0 0 ߗ 0 00 ߗ− 0 0 00 0 0 ாߤ− 00 0 0 0 ۋیேߤ−

ۊ
  

ܦ   = ۈۈۉ
ۇ 0 00 00 0ඥ2ߪாଶߤா 00 ඥ2ߪேଶߤேۋۋی

     ۊ
 

(29) 

Inpractice two-channel control for horizontal axes 
is used. While in this paper, for extracting matrix A, 
because of constrains in the algorithm, a five-channel 
virtual control is utilized. Therefore: ݔሶ(ݐ) = (ݐ)ݔܩ + (ݐ)ݑܤ +  (30)                                    (ݐ)ݓܦ

By assumption of matching condition ((ݐ)ݓܦ (ݐ)ሶݔ :the equation (30) can be rewritten as ,((ݐ)ଵݓܤ= = (ݐ)ݔܩ + (ݐ)ݑܤ + =           (ݐ)ݓܦ (ݐ)ݔܩ + (ݐ)ݑܤ +  =           (ݐ)ݓܦ (ݐ)ݔܩ +  (31)  (ݐ)ݑܤ

where: ݑ(ݐ) = (ݐ)ݑ +  (32)                                               (ݐ)ଵݓ

For implementing the proposed method, we need 
thediscrete model of the system. For this aim, we use 
the approximation: ݔሶ(ݐ) ≅ ௫(ାଵ)ି௫()௧                                                    (33) 

Therefore: ݔ(݇ + 1) = (݇)ݔ෨ܩ  (݇)                                  (34)ݑ෨ܤ +

where: ܩ෨ = ܫ + ෨ܤ    ,   ݐΔܩ =  (35)                                       ݐΔܤ

If we choosethe following parameters: ߗௗ = ߗ ∗ sin(߮) ቀௗ௦ ቁ  ߗ = ߗ cos(߮) ቀௗ௦ ቁ  ߗ = 7.29 ∗ 10ିହ      (ௗ௦ )     ߮ = ாߤ    ,     35.5° = 3 ∗ 10ିଷ  ߤே = 10ିଷ   ,   Δݐ =   (ݏ) 0.01
With substituting in (29), (35): 

෨ܩ = ۈۉ
ۇ 1 4.23݁ − 7 0 0 0−4.23݁ − 7 1 5.93݁ − 7 0 00 −5.93݁ − 7 1 0 00 0 0 0.999 00 0 0 0 ۋی0.999

ۊ
    (36) 

With applying HDP+NN, ௨ܹ and  ௩ܹ converge to: 

௨ܹ =
ۈۉ
1.0000−ۇ 0.0000 0.0002 0 0−0.0002 −1.0003 0.0000 0 0 0.0002 −0.0000  −1.0002 0 00 0 0 −0.00001 00 0 0 0 ۋی0.00003−

ۊ
  

௩ܹ = ൭ 1562640609 273  −646052 0 01563094323 460 0 0 15628641410 0 16666 0  5 ൱  

(37) 

The convergence of the two weights (for 
example ௨ܹ(3,3)and ௩ܹ(1,2)) is shown in Fig . 2. 

 
(a) 

 
(b) 

Figure 3. The convergence of (a) ௨ܹ(3,3) ܽ݊݀ (ܾ) ௩ܹ(1,2) 

Using (25): 

෨ܩ = ۈۉ
ۇ 1.0000  0.0000 −0.0002 0 0−0.0000 1.0000 0.0000 0 0 0.0000 −0.0000  0.9999 0 00 0 0 0.9999 00 0 0 0 ۋی0.9999

 (39)       ۊ

Comparing (36) and (39) shows that the proposed 
estimation method works properly. In [13], another 
closed-loop subspace identification method which is 
based on the least-square problem is presented. In this 

procedure,ܩ෨can be found as the solution to the 
problem  ܷ൫1: (݂ − 1)݊௬: ൯ܩ෨ = ܷ(݊௬ + 1: ݂݊௬, : )            (40) 

For details see [13].  
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From (40): 

෨ܩ = ۈۉ
ۇ 1.0000 1.22݁ − 7 −0.0002 0 0−1.22݁ − 7 1.0000 0 0 0 0.0000 −0.0000  0.9999 0 00 0 0 0.98 00 0 0 0 ۋی0.98

ۊ
     (41) 

comparing (39) and(41) shows that the proposed 
method in this paper enjoys ahigher accuracy 
especially in estimating the drift filter of gyroscopes 

that is related to the last two entries on the diagonal ܩ෨. 
CONCLUSION 

In this paper, a new method for extracting the inner 
dynamics matrix for a discrete time system was 
proposed. This idea is obtained from solving the HJB 
through thecomposition of Heuristic Dynamic 
Programming and Neural Network, in which the linear 
system critic network converges to the solution of ARE, 
the control network converges to the optimal policy and 
the internal dynamics did not require to implement 
HDP. This method was applied for estimatingtheinternal 
dynamics matrix of a gimbaledInertial Navigation 
System. furthermore, theestimation of gyroscopes 
random error filter was performed with precision. 
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