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In this paper, with the aim of estimatinginternal dynamics matrix of a gimbaled
Inertial Navigation System (as a discrete linear system), the discrete-time Hamilton-
Jacobi-Bellman (HJB) equation for optimal control has been extracted. Heuristic
Dynamic Programming algorithm (HDP) for solving the equation has been presented and
then a neural network approximation for cost function and control input has been
extracted to simplify the solutionof HJB.Design process of the optimal controller shows
that, we do not need to know the system matrix. This important issue and the convergence
of the HDP algorithm to the optimal control policy makes possible the estimation of the

internal dynamics matrix.
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INTRODUCTION

Initial Alignment in< gimbaled Inertial Navigation
Systems (INS) is a complicated experimental process,
which needs a multivariable control system [1, 2].
Because of uncertainties in the mechanical and
electrical parts of INS, sometimes we need to use
certainidentification methods to determine system
parameters [3-6]. As shown in Figure 1, a gimbaled
INS consists of a three-axial suspension mechanism,
with an assembly of inertial sensors (3 gyroscopes and
3 accelerometers) on it, and some necessary actuators.
The design of a control system for this purpose, needs
the internal dynamics matrix of the platform. In the
present article, we use a new identification method to
determine this internal dynamics matrix based on a
HDP algorithm.
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Figure 1. a gimbaled INS [1]

System identification is the process of developing
or improving the mathematical representation of a
physical system using experimental data. There are
three types of identification techniques: modal
parameter identification,structural model identification
and controlmodel identification [7].The main aim of
system identification is to determine a mathematical
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model of a physical/dynamic system from the
observed data. Six key steps are involved in system
identification [7]; (1) Developing an approximate
analytical model of structure, (2) Establishingthe
levels of structural dynamic response which are likely
to occur using the analytical model as well as
thecharacteristics of anticipated excitation sources, (3)
Determining the instrumentation requirements needed
to sense the motion with prescribed accuracy and
spatial resolution, (4) Performing experiments and
recording the data, (5) Applying system identification
techniques to identify the dynamic characteristics such
as system matrixes, modal parameters, as well
asexcitation and input/output noise characteristics, and
(6)Refiningthe analytical model based on the identified
results. The traditional identification techniques
extracting modal parameters from input and output
data have been well-developed and widely used in
engineering. However, it is often a demandingtask to
carry out excitation in the field testing of large
engineering structures. To obviate such difficulties of
the traditional techniques, methods of extracting modal
parameters from structural response data have only
been deeply investigated during the lastfew decades
[8].Approximate dynamic programming (ADP) is a
very effective method for the solution of Discrete-
Time Nonlinear HIB [9]. There are many techniques
of ADP to solve the cost function and hence the
optimal control policy [10]. In [11], ADP techniques
are classified into: heuristic dynamic programming
(HDP), dual heuristic dynamic programming (DHP),
action dependent heuristic dynamic programming
(ADHDP), and action dependent dual  heuristic
dynamic programming (ADDHP).In [12], Liu and Li
used optimal control for discrete-time HJB.

In the present studybased onthe idea of HDP, we
extract a new internal dynamics matrix identification
method. At first, we introduce the discrete time HJB,
then, we useheuristic dynamic programming algorithm
for solving HIB online, -and finally introduce two
neural network parametric structures to approximate
the optimal cost function and policy. At last, using the
main results obtained, we extract an estimator for the
internal dynamics estimation of a discrete linear
system.

DISCRETE-TIME HJB EQUATIONS
Consider an affine dynamic system of the form:
X1 = fOa) + 9O dulx) (1)
where x € R™ f(x) €ER™ . g(x) € R"™and the
inputu € R™.

It is desired to find the control input which
minimizes the cost function given as (2):

V(xk) = Z-;.zozk anQ Xp + unTR Up (2)
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where Q >0 and R > 0.
From Bellman's optimality theory and [13]:

* 1,5 v ( )
u' () = ;R g(n)" =5 3)
and:
. 19V (xgesr)
V*(x) = xi" Q. Z—ax;k;l g(xi)
_ av* *
R g ()" B 4 e () @)
k+1

This equation reduces to the Ricatti equation in
the linear quadratic regulator (LQR) instance, which
can be solved with precision. In the general nonlinear
case, the HIB cannotbe solved exactly.

From [9], the value iteration HDPalgorithm for
solving it is proposed as:

T T
u;(x,) = arg min, {xk Q;;:‘(;_ki;? v +}
=arg min wlxTOx +u"Ru +
Vi(lf () + g (o u)}

—1p-1 T OVi(Xkt1)
= zR 9(xi) " A

Vi1 (i) = ming {x," Qxp +u"R u + Vi (xp4q)} =
X" Q. +

®)

u; () "R w; () + Vi (f () + g (e (o)) (6)

subsequently, for solving the equations (5), (6),
neural network estimation has been proposed as
follows:

Vi(x) = Bk wi 0;(x) = W, "9 (x) (7
;(x) = XL, wy 0;(x) = Wy, "o (x) (3)

where @(x) and o(x) are the activation functions
and W,,; and W,;; are the network weights.

The updatedlawfor W,,; and W,;is obtained from
9), (10) as:

Wosr = (f, G090 dx)

5 9

Jo DT (D), W) dx ©)
Wyilmae1 = Wyilm — a () 2R G; (o, Wy |m) +

9T T )T (10)

0(Xk+1)

where () is the training set,@ is a positive step
size, and m is the iteration number of the LMS
algorithm.

Assuming the convergence of HDP algorithm for
a linear system, the last relations show, V;(x;) and
u;(x;) converge to the cost function of the optimal
control problem and to the corresponding optimal
control input,respectively.

The most important feature which is seen in (9)
and (10) is that f(x;)isn't is notneeded to update the
critic neural network weights and this issue makes
possible the estimation of system inner dynamics
matrix using composition of heuristic dynamic
programming control algorithm and neural network.
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ESTIMATION of INNER DYNAMICS
MATRIX of DISCRETE-TIME LINEAR
SYSTEM

Consider the linear discrete system (for example with
five states), described as:

x(k+1) =Gx(k) + Bu(k) (11
From LQR method:

uw*(x) = —Lx (12)

where:

L =(R+ BT"PB)"'BTPG (13)

And P is the symmetric positive definite of below
Ricatti equation:

P=GTPG+Q — GTPB(R + BTPB)~! x

BTPG : (14)
and
V*(x) = xTPx (15)

A reasonable selection of activation functions
vector for cost and control input would be as:

2 2
P(x) = [, X121 X3 X1Xy X1X5X;"XpX3
XpX4 XpXs X3°X3X4 X3Xs X4?X4Xs X5°]T (16)

T
6 (x) = [x;2,23%4%5]
Then, converged weight vectors have the form of:

— 1.2, 31, 41, Sy, 614y 7
VVV_[WUWUWUW‘UWVWUW‘U

T
8y, 91y 10y, 11,,, 12, 13, 14,, 15
WV WV WV WU WU WV WV WU ]

]/Vu =
Wul.l Wu1.2 Wu1.3 Wu1.4 Wul.S (17)
Wu2.1 Wu2.2 Wu2.3 Wu2.4- WuZ.S
Wu3.1 Wu3.2 Wu3.3 Wu3.4 Wu3.5

\Wu4.1 Wu4.2 Wu4.3 Wu4.4 Wu4'5/
Wus.l Wu

and:

Vi(x) = W,"(x)

— 18
T () = W, o) (1%)

As explained in section 3, HDP algorithm
converges to the cost function of the optimal control
problem and to the corresponding optimal control
input, respectively. i.e.

7 (x) = V*(x)

19
wr(x) = u*(x) (1)
Therefore:
W,T@(x) = x"Px
(20)

w,To(x) = —Lx
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We define:

w,t 05w,2 05w,  0.5w,* 05w’
/O.SWV2 w6 0.5w,”  0.5w,? 0.5wv9\
W=|05w,2 05w, w,2 05w,"" 05w,
\0.5wv4 0.5w,® 05w,  w,2 05w, /
05w,” 0.5w,” 05w,? 05w,* w3

e2y)

Then, (16-21) results:

P=w
22)
L=-w,"

Using (13), (22):
-w," = {R + BTWB} 'BTWG (23)

If the number of states is equal to control inputs,
i.e. size(G)=size(B) and B is nonsingular, (constrains
of proposed estimation algorithm), then, there is a
unique solution for G from (23):

G ={WBT 'R+ BywW,” 24)
That can be simplified to:
G = {W-BT'R4 ByW,” (25)

A Dblock-diagram of the proposed estimation
method is shown in Fig. 2.
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Figure 2. Block-diagram of the proposed estimation method

ESTIMATION of INNER DYNAMICS
MATRIX of GIMBALED INERTIAL
NAVIGATION SYSTEM

Gyroscopes random error is defined as a stable
stochastic process with autocorrelation function as
follows [1]:

G ={W- BT 'R+ BW,” (26)

where og; is the standard deviation of random error
of gyroscopes, which is known, and y; is the damping
coefficient.

Differential equation of gyroscope error is as:
D, + w;D; = /207 p;.w (27)

Where w is a white noise with N'(0,1).
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Dynamic equations of inertial navigation system
considering gyroscopes disturbances are [14]:
x(t) = Gx(t) + Dw(t) (28)
where:

0o 0, 0 0 0
( -0, 0 0, 0 0 \‘
G=| 0 -0, 0 0 0

& 0 0 0 —u

0 0 0 0

0
0 (29)
0

V203 g 0
0 V205 uy

Inpractice two-channel control for horizontal axes
is used. While in this paper, for extracting matrix A,
because of constrains in the algorithm, a five-channel
virtual control is utilized. Therefore:
x(t) = Gx(t) + Bu(t) + Dw(t) (30)
By assumption of matching condition (Dw(t) =
Bw; (1)), the equation (30) can be rewritten as:
x(t) = Gx(t) + Bu(t) + Dw(t)

o O O

D=

= Gx(t) + Bu(t) + %Dw(t) (31)
= Gx(t) + Bi(t)
where:

a(t) = u(t) + wi(t) (32)

For implementing the proposed method, we need
thediscrete model of the system. For this aim, we use
the approximation:

i(p) = (33)
Therefore:

x(k+1) = Gx(k) + Bii(k) 34)

where:

G=1+GAt , B=BAt 35)

If we choosethe following parameters:
04 = 0, *sin(e) (%)
0, = 0, cos(p) (=)
0,=729+105 (=9
=355, up=3%1073
py =1073 , At = 0.01(s)

With substituting in (29), (35):

1 4.23e -7 0 0 0
—4.23e -7 1 593¢—~7 0 0
G= 0 —593e —7 1 0 0 (36)
0 0 0 0999 0
0 0 0 0 0999

With applying HDP+NN, W,, and W, converge to:
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W, =
—1.0000  0.0000  0.0002 0 0
—0.0002 —1.0003  0.0000 0 0
ko.oooz —0.0000 —1.0002 0 0 )
0 0 0 —0.00001 0
0 0 0 0 ~0.00003 (37
1562640609 273 —646052 0 0
W, = | 1563094323 460 0 0 1562864141
0 0 16666 0 5

The convergence of the two weights (for
exampleW,,(3,3)andW,,(1,2)) is shown in Fig . 2.
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Figure 3. The convergence of (a) W, (3,3) and (b) W,(1,2)
Using (25):
1.0000 0.0000 —0.0002 0 0
. [ —0.0000 1.0000  0.0000 0 0
G=| 00000 -0.0000 0.9999 0 0 (39)
0 0 0 0.9999 0
0 0 0 0 0.9999

Comparing (36) and (39) shows that the proposed
estimation method works properly. In [13], another
closed-loop subspace identification method which is
based on the least-square problem is presented. In this

procedure,G:can be found as the solution to the
problem

Up(1: (f = Dy )G = Up(ny + 1: fny, ) (40)
For details see [13].
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From (40):
1.0000 1.22e —7 -—0.0002 0 0
~ —1.22e—7 1.0000 0 0 0
G=| 00000 —0.0000 09999 0 0 41)
0 0 0 098 0
0 0 0 0 098

comparing (39) and(41) shows that the proposed
method in this paper enjoys ahigher accuracy
especially in estimating the drift filter of gyroscopes

that is related to the last two entries on the diagonal G.

CONCLUSION

In this paper, a new method for extracting the inner
dynamics matrix for a discrete time system was
proposed. This idea is obtained from solving the HJB
through  thecomposition of Heuristic Dynamic
Programming and Neural Network, in which the linear
system critic network converges to the solution of ARE,
the control network converges to the optimal policy and
the internal dynamics did not require to implement
HDP. This method was applied for estimatingtheinternal
dynamics matrix of a gimbaledInertial Navigation
System. furthermore, theestimation of gyroscopes
random error filter was performed with precision.
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