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and preventing structural degradation due to fatigue, 
environmental deterioration, or accidental damage 
throughout the operational life of the aircraft. The 
structural maintenance task(s) are developed as part of 
the scheduled structural maintenance [2]. In this 
study,the aircraft SSI component of a Boeing 747 
wasselected for assessment of crack growth using 
SLD, implementing crack growth analysis through the 
experimental study of fatigue crack . Smaller cracks 

were investigated with fractography and lead cracks 
were investigated using“FEM “. Upon part selection, 
the general spectrum of loading was defined, and after 
designating loading spectrum, with the aid of 
modeling, fatigue crack growth and the element design 
were analyzed based on the finite element method. 

Background 

MSG-3 Development 

In 1968 the MSG was created with a mandate to 
formulate an LDP for development of the initial 
scheduled maintenance requirements for new aircrafts. 
That same year, representatives of the steering group 
developed “MSG-1” which, for the first time, used an 
LDD to develop the scheduled maintenance program 
for the new Boeing 747 aircraft. In 1970, MSG-1 was 
updated to MSG-2 to make it applicable for later 
generations of aircraft.MSG-2 decision logic was 
subsequently used to develop scheduled maintenance 
programs for the aircraft of the 1970s.  

In 1979, the ATA task force sought to improve on 
MSG-2 in order to address a new generation of 
advanced technology aircraft (B757 and B767)[1]. The 
work of the ATA task force led to the development of 
a new task-oriented maintenance process defined as 
MSG-3[1]. Today, MSG-3 is the only method used by 
commercial airplane manufacturers. Policy states that 
the latest MSG analysis procedures must be used for 
the development of routine scheduled maintenance 
tasks for all new or derivative aircraft. In MSG-3, the 
structural inspection program is designed to provide 
timely detection and repair of structural damage 
occurring during commercial operations. Detection of 
damages such as corrosionand fatigue cracking by 
visual and/or NDT procedures are considered [1].The 
primary objective of the scheduled structural 
maintenance is to maintain the inherent airworthiness 
throughout the operational life of the aircraft in an 
economical manner. To achieve this, the inspections 
must meet the detection requirements of each of the 
AD, ED and FD assessments. Inspections related to the 
detection of AD/ED are applicable to all aircraft when 
they first enter service [2]. Also inspections related to 
FD detection in metals are applicable after a threshold 
[2]. Additionally, accidental Damage (AD) is 
characterized by the occurrence of a random discrete 
event [2]. Besides, Environmental Deterioration (ED) is 

characterized as structural deterioration resulting from a 
chemical interaction with its climate or environment 
[2]. Finally, Fatigue Damage (FD) is described as the 
initiation of a crack or cracks due to cyclic loading 
and subsequent propagation [2]. Moreover, in order 
to increase the level of safety and economical gain 
for operators as well as manufactures and to ease the 
oversight of authorities in the structural division, at 
first all aircraft structural elements shouldbe 
classified. Secondly, the group classification of the 
types of inspections and maintenance intervals has 
tobe examined.The above-mentioned elements 
consist of  [2]: 

1. SSI which in fact are primary structural parts of the 
aircraft.A Structural Significant Item (SSI) is any 
detail, element or assembly, which contributes 
significantly to carryingflight, ground, pressure or 
control loads, and thefailure of which could affect 
the structural integrity necessary for thesafety of the 
aircraft [2].  

2.Other elements, known as “Other Structure”,is 
judged not to be a structural Significant Item. It is 
defined both externally andinternally within zonal 
boundaries [2]. 

The structural logical diagram“SLD” in the MSG-
3. process is shown in Fig. 1. 

Extended Fatigue Testing 
Between 2002 to 2005 three articles were published by 
Bakuckas and Carter (2002 -2003) and Mosinyi, 
Bakuckas, Ramakrishnan, and Lau-Tan-Awerbuch 
(2005) on extended fatigue testing onsome parts of   a 

scrapped Boeing 727 (i.e. extended fatigue testing to 
evaluate the structural integrity of high age aircraft) 
[3,4,5]. In fact these articles were the result of a 
common project accomplished by a team of 
representatives from the Federal Aviation 
Administration, Delta Airlines, and Drexel University 
whichlasted four years  and involved tear-down 

inspection and extended fatigue testing on a scrapped 
Boeing 727 structure with the total cycle equal to 60000 
[3,4,5]. These activities were accomplished on 
suspected widespread crack growth points, and for this 
purpose, eleven aircraft fuselage panels were dismantled 
from the aircraft;seven panels with unique damage were 
investigated by Non-destructive testing (NDT) and the 
four remaining uniquely damaged panels were 
examined in an FAA-approved laboratory under 
complete aircraft fuselage testing[3,4,5].In fact, possible 
existing cracks and crack growth during this test were 
actively inspected. There were no signs of crack after 
43500 simulated flight cycles (FC). In an aircraft which 
was equal to 60,000 cycles before being completely 
scrapped, after 104,000 flight cycles on the test panel, 
there was no sign of crack [3, 4, 5]. 
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Implementation of “MSG-3”   for Crack Growth Analysis of Aircraft …

 

Figure 1. SLD in MSG-3 process 

Theoretical Investigation 

Introduction of the Part to be investigated 

As mentioned in the previous section, the main goal of 
this study wasto implement the MSG-3 process on 
selected SSI elements of a Boeing 747 aircraft.The study 
focused on a part of the structure and according to the 
SLD and MSG-3 process, the intended part was 
designated through a structure logic diagram. The 
selected SSI parts of a Boeing 747; with accumulated 
16756 FC and 64555 FH were removed from section 41 
of this aircraft andlocated on Frame Station 300[6].The 
main task in this study was to investigate crack growth 
rate in crack locations, in a defined direction and under a 
specified default loading spectrum. Figs. 2 through 4are 
illustrations of the part under investigation. A hole is 
shown in one of these areas. The general form of these 
cracks for the selected part is shown in detail in Fig. 4. 

 

Figure 2. Theimage of frame station 300, 280 and selected 
component on aircraft fuselage 
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Fatigue Crack Growth Analysis 

In order to calculate the component fatigue life limit 
from a fracture mechanics point of view, it wasneeded 
to consider the subject of fatigue crack growth. In the 
finite element analysis for crack growth modeling, we 
need the specific criteria (i.e. finite elements output 
data) which, in this field of study, are obtained from 
variable functions in structural analysis. In fact these 
variables are displacement. If a quantity such as stress, 
strain, or energy, which is related to these 
displacements, is considered in the final evaluation, 
the stress intensity factor which introduces fracture 
mechanics elasticity wouldhelp find the property thatis 
in a linear situation with the field of stress at the final 
stage of the finite element analysis. With the aid of a 
model based on this property, we canachieve a certain 
indicator for fatigue crack growth. The item in accord 
with fatigue analysis from a fracture standpoint in the 
finite element method is, in fact, crack growth. In this 
case, using the model and growth criteria hand in the 
same result, and the fatigue crack rate (i.e. growth 
length in each loading cycle) wouldbe drawn in the 
form of extremities of stress intensity factor variations 
at the point of the crack. Fatigue crack growth rate 
diagrams (i.e. crack length in each loading cycle) are 
presented for 3 types of aluminum based on the tensional 
stress variation of the coefficient extremity at the crack 
tip [9]. This logarithm diagram is divided into 3 zones 
which, for the intermediate zone (linear part) power 
equation, are known as Paris’ law (Equation3,4) [10, 11]. ௗௗே = ݂(݇)                                                                  (3) ௗௗே = ܿ(∆݇)                                                             (4) 

The material used for the aforementioned 
modeling wasaluminum T6-7075 and the two constant 
values“c” and “m” were calculated whilethese two 
constant values for the proposed aluminum 
wereselected as 3.6e-11 and 4.1 [9]. Consequently, the 
part service life time was calculated with the 
integration in Equation 5being per se derived from 
Equation (4) [10, 11]. ܰ =  ଵ(∆) ݀ܽ                                                         (5) 

By assuming the final crack a critical crack, its 
length will be located at the upper limit of the equation 
(5).In this equation, N wouldbe the final service life of 
the component. The location and direction of the initial 
cracks in the structure will determine the amounts of 
the stress intensity factor during growth and 
consequently, by assuming a model f(∆k) function, it 
wouldbe possible to calculate the integral (4). The size 
and direction of initial crack is the same as the bigger 
crack, and the situation around the crack is the same as 
the component used for proposed modeling (bigger 
crack on right hand side of hole in Fig. 4).With respect 

to the number of loading cycles beingknown, the 
calculationof crack growth was carried out. The 
calculation of the crack growth rate (∆ܽ) in this 
number of cycles was considered and calculated using 
equation (6), and in this case integration of N wouldbe 
made [10, 11].  ܽ =  ݂(∆݇)݀ܰேమேభ                                                           (6) 

In other words, ten blocks of loading equaling 
6000 cycles were applied to the model at each block. 
The sum of the block increment for each of them was 
calculated. Therefore loadings, except cabin 
deferential pressure, werecalculated as a variation of 
acceleration at aircraft c.g for 6000 flight block, as 
reported in Table 21in the reference [8]. Thusfinal 
acceleration spectrum which the aircraft 
wouldexperience at c.g was calculated.This 
acceleration spectrum became fuselage longitudinal 
stress and after combining with longitudinal and lateral 
stress caused from internal cabin pressure, the stress 
spectrum for 1 period of 6000 flights was achieved. 
Therefore we would be able to do the same calculation 
for 10 blocks of 6000 flights. 

If da/dN is a constant value, it is possible to 
calculate crack growth rate for 1 loading cycle (1 
flight) and then multiply any number of cycles, which 
result in final length. In fact the practical method is to 
divide the number of spectrum cycles by 6000 flights, 
and the number of cycles for 8 different stages of each 
flight couldbe calculated.  This helps the specified 
code to be capable ofsolving the finite element model 
for 6000 flights and causes the exact number of flights 
required for cracking to reach the required specified 
length. 

The worst and most unrealistic method is to apply 
60000 flights simultaneously in order to make the 
crack reach critical distance, because it is not possible 
to distinguish at what number of flights critical value 
is recorded. The nominal method for solving this 
problem is to divide 60000 flights into 10 different 
parts andthe final crack length in each stage of the 
initial crack wouldbe the default value for the next 
stage. Each of the ten parts consists of 8 loading 
blocks. In each block there exist 6000 flight cycles. 
For example, at the first block there are 6000 aircraft 
surface movements before commencing the flight, and 
in the second block there are 6000 takeoffs, and the 
situation is the same for climb, cruise, landing, and 
surface movement after landing and flight. Consider, if 
the crack for the fifth period of loading reaches critical 
value, that event wouldoccur between 24000 and 
30000 flights. In order to find the precise number of 
failure situations, it is possible to increase the number 
of loading periods, for example to increase 10 periods 
of 6000 block 60 of 1000 block will help calculate the 
results for less than 1000 flights. 
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In Fig.18, the stress intensity factor at maximum 
and minimum loading for60000 flightsis as illustrated 
for the 4 points of A, B, C, and D at the first zone of 
the fuselage. Also inthe landing phase an excessive 
load wouldbe applied to the fuselage, but as interior 
cabin pressure approaches zero, there is no sign of 
increase in stress values. For  ݇௩ as we see in Fig.19, 
from maximum and minimum values it is possible to 
find the range of variation in ݇௩ values.  

In Fig.20 we can see ∆݇௩ for 60000 flight 
cyclesof 4 specified points at the first zone of fuselage. 
The limit for cruise flight and landing of aircraft can 
also be seen in the diagram. One period of calculation 
consisting of 6000 flights of 54000 to60000 flight 
cycles for 4 points at the first zone of the fuselage is 
shown in Fig.21. The main point which should be 
noticed in comparing Figs.19 and 21 is the significant 
situation for ∆݇௩ at the landing phase and the ݇௩ 
during cruising conditions. As we can see, the fuselage 
experiences the most deviation of stress intensity 
factor during landing phase of the flight; but that does 
not mean that most crack growth occur during this 
phase of the aircraft. By referring to reference [8] table 
21, we can see that, for 6000 flights the aircraft will 
experience 6.8 million cycles, but for the aircraft 
landing phase, only 6000 cycles is applied during 6000 
flights. That is to mean that in each flight more than 1 
million cycles of variation in the ∆݇௩ domain is 
applied to the fuselage while it cruises, but ∆݇௩ for 
the landing phase occurs only once.  For this reason, in 
order to have a share of each stage of flight 
represented in crack growth it is better to apply the 
number of cycles in the calculations. 

Fig.22 shows the crack growth rate with an initial 
length of 1 millimeter for assigned points. As we see, 
crack growth during the aircraft landing phase (third point 
from right) is approaching zero. In Fig.23 (a, b), crack 
growth variation based on each phase of flight is shown. 
It is obvious that a crack with an initial length of 1 
millimeter at point A and B does not have considerable 
variation (the red and black curves). In point C the range 
of variation is small and rises incrementally with 
increases in crack length.  Even at point D crack length 
shows no considerable changes, and it is possible to see 
ascending and descending trends for  ∆ܽ . If the 
calculation of the flights is continued for more than 
60000, once again the trend of changes increases.  This 
significant change for ∆ܽ is a result of stress effect 
respecting the location of the crack. The stress situation at 
the tip of the crack changes continually, however. In 
Fig.24, ∆ܽ variation of values can be seen. Also in Fig. 
25 these parameters are illustrated in integrated form, 
including the 1millimeter initial length of the crack. As 
we can see, cracks with an initial length of 1 millimeter 
will increase to 3 millimeters as a result of 60000 flight 
cycles. By limiting flights to 6000, the crack growth 
value for 6000 cruise flights can be seen. In order to 
distinguish the trends of change for crack length as shown 
in Fig.24, the points for the end of each of the 6000 
flights is presented. 

In Fig. 25, the fatigue crack growth curves are 
compared with linear conditions, and it is obvious that as 
a result of less crack growth, the trend of these changes 
approaches linear conditions. In case of a continued 
increase in cyclic loading, the growth trend wouldleave 
the linear situation, and its shape woulddepend on the 
length of the crack. In addition, we see that at no point 
wouldthe crack reach the critical length.  

 
Figure 18. equivalent stress intensity coefficient at maximum and minimum loading of60000 flights for 4 points at 

the first zone of fuselage 
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Figure 21. The equivalent domain for stress intensity coefficient changes during 1 period of calculation, on 6000 flights from 
54000 to 60000 flights on 4 points at the first zone of fuselage 

 
 

 

Figure 22. Crack growth rate with initial length of 1 millimeter during 1 period of calculation, on 6000 flights from 54000 to 
60000 flights on 4 points at the first zone of fuselage 
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Figure 23. (a, b). Crack growth rate for initial crack of 1 millimeter ofsample during 60000 flights on 4 points at first zone of fuselage 
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Figure 24. Crack length value of first 1 millimeters of sample as a result of 60000 flights on 4 points at the first zone of the 
fuselage 

 

Figure 25. Crack length value of first 1 millimeters of sample as a result of 60000 flights on 4 points at the first 

zone of the fuselage 

Conclusion 

The best ways to promote an aircraft structural design 
and maintenance program could be using the  MSG-3 

process (on structure). This process is based on LDP 
and covers the accidental, environmental and fatigue 
damages for SSI and other structural items. In this 
article we investigated the MSG-3 process for SSI 
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components. For this purpose fractography and the 
crack growth analyses by FEM wereused.In the 
selected component and for smaller crack the result 
of fractography for the surface fracture indicated that 
the lead crack initiation growth rate and  also for 
bigger crack under life limit cyclic loadingin none of 
the selected points the crack would reach the critical 
length;hence, specified periodic inspection would be 
done. As mentioned before, the MSG-3 process 
covers all damage types. In future plan the first step 
for promoting the maintenance program in structure 
field is that all cracks in SSI components are going to 
be placed under investigation in selected aircraft 
tocover the fatigue damage and then the plan on the 
other components and damages type will be 
developed. 
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