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Three-axis-magnetometers (TAMs) are widely utilized as a key component of attitude
determination subsystems and as such are considered the corner stone of navigation for
low Earth orbiting (LEO) space systems. Precise geomagnetic-based navigation demands
accurate calibration of the magnetometers. In this regard, a complete online calibration
process of TAM is developed in the current research that considers the combined effects
of environmental and instrumental errors including biases; non-orthogonally parameters
,and the scale factors, without the need for clean roomfacilities. The sensor
characteristics are estimated utilizing Kalman filter for -a micro electro-mechanical
sensor(MEMS)-based TAM standing on the experimental measured outputs in a noisy
laboratory environment. Moreover, the stochastic TAM behavior is identified using the
method of Allan variance analysis (AVA) through a six-hour static test. Subsequently, the
nonlinear/non-Gaussian problem of attitude estimation, using a set of calibrated strap-
down magnetometers is addressed utilizing the unscented particle filter (UPF), developed
for the removal of colored-noise. Comparison of the estimated attitude, represented by
quaternion parameters, with the true orientations demonstrates an acceptable level of
accuracy of the developed calibration technique for small LEO space systems. Analysis of
the root mean square error of the estimated attitude illustrates an accuracy of less than
one degree for all axes. This is an_ideal result, given the fact that MEMS-based
magnetometers have been utilized.
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Nomenclature
Rotation angle

Vector of quaternion parameters

Angular velocity of the body frame respect
to the navigation frame

Hard iron bias vector
Soft iron bias vector

Vector of scale factors
Misalignment matrix
Geomagnetic field vector

Coordinate transformation matrix of body
frame with respect to navigation frame

Estimation error covariance matrix
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State vector

Process noise vector

Measurement vector

Measurement noise vector

Transition matrix of the colored noise

Zero-mean Gaussian white noise
Covariance matrix of the process noise

Covariance matrix of the measurement noise
Expectation operator of X
Kronecker delta function
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Introduction

Three-axis magnetometer (TAM) is an essential
component of many navigation packs for LEO
satellites. TAM is utilized in vast areas of aerial-,
space-, and earth-navigation robots as well as human
body kinematics estimation. Special features of TAM
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such as low cost, small size, lightweight, reliability
and low power requirements are some of the key
reasons for its widespread application (Wu et al.,
2011). TAMs can provide suitable estimations of space
system attitude and position via measuring the
geomagnetic field along the body axes. There for e,
TAM has been selected as the most popular attitude
sensor in cube satellites. However, due to a number of
limitations and inadequacies in manufacturing,
installation and material as well as the environmental
influences, their output is usually contaminated with
different errors. In general, bias, scale factor and non-
orthogonally parameters are the most important error
parameters for three-dimensional (3D) field sensors
like TAMs. Obviously, such erroneous measurements
cannot provide accurate estimations of the vehicle’s
attitude or position, hence, sensor calibration is an
essential requirement for the purpose of precise
navigation.

Magnetometer calibration is not a new topic and
has been addressed in numerous researches before.
There is a wide variety of mathematical methods for
sensor calibration, but they can all be classified into
two main groups of batch estimation and recursive
estimation. Batch estimators need a batch of measured
data to provide an estimation of the parameter and/or
state vectors, while the recursive filters estimate the
parameters or states recursively upon the progressive
receipt of the measurement data. The method of least
square error is the most widespread scheme utilized for
offline calibration of TAMs. Zhang et al. (2014) have
utilized the homogenous least square error method to
estimate the error parameters and orientation.
Furthermore, Zhang et al. (2009) have transformed the
TAM calibration problem to an ellipsoid-fitting issue
and adopted the direct least square scheme for its

solution. Wu et al. (2011) have transformed the
nonlinear problem of “attitude-independent TAM
calibration to a parameter optimization problem using
particle swarm optimization (PSO). It is claimed that
PSO-based calibration provides better results as
compared with the so-called two-step method (Gebre-
Egziabher &Elkaim, 2011).

Since most of the dominant sources of sensor
errors are usually time varying, offline calibration
cannot compensate their effects completely. In this
regard, Crassidis et al. (2005) have used nonlinear
filters of the extended Kalman filter (EKF) and the
unscented Kalman filter (UKF) for the sequential
calibration of the TAM in real time. It is shown that
the accuracy level of both filters are the same, but
UKF is more robust against large initial errors. Soken
and Hajiev (2011) have also utilized a reconfigurable
UKF to estimate bias and scale factor parameters as
part of an attitude estimation problem. Beravs et al.
(2014) have utilized a precise 3D Helmholtz coil for
the magnetometer calibration using UKF. Their
proposed method repeatedly uses the covariance
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matrix decomposition for the estimation of the
maximal sensitivity axis to assess the next best
orientation of the coil magnetic field. Vasconcelos et
al. (2011) have formulated a maximum likelihood
estimator to find the optimal calibration parameters
iteratively. Initial conditions for the iterative algorithm
are also obtained using a suboptimal batch least square
computation.

In the present study, recursive calibration of
TAM in a noisy test facility is considered,where the
error parameters are modeled as a random walk
process. Kalman filter is the optimal choicefor the
parameter estimation of such linear systems.
However, Investigation of the stochastic behavior of
the tested Honeywell TAM disclosed non-
Gaussian/non-white behavior . of the measured
signals. Therefore, a colored-noise unscented particle
filter (UPF) was further developed to cope with the
nonlinear problem of attitude estimation using the
calibrated TAM.

The remaining  sections of this paper are
organized as follows. First, the attitude kinematics is
described. Next, the magnetometer errors and the
pertinent modelings are introduced. Subsequently, the
calibration algorithm is elaborated on, followed by
experimental results obtained from the laboratory tests
of a Honeywell HMC5883L magnetometer. The final
part of the paper summarizes the results and addresses
some future prospects for further research.

Attitude Kinematics

Attitude kinematics describes how the orientation of a
vehicle changes under the influence of its angular
velocity. There are various methods to represent the
vehicle’s attitude such as the Euler angles, quaternion
parameters, Gibbs vector, direction cosine matrix, etc.
(Shuster, 1993). The method of quaternion parameters
is the most desired and widely used means to
characterize the attitude, due to its linear propagation
equation and its non-singular feature for any arbitrary
rotation angle. The constraint of unit norm is the only
disadvantage of the quaternion parameters which
needs to be met in every estimation problem.

The quaternion parameters can propagate in time as
follows (Zipfel, 2000),

q=%§2(a)BN)q M
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In which n=[n, n, n,]"is the axis of rotation and
¢ is the angle of rotation. ¢, is also considered the

scalar part of the quaternion, (,& = l—qTq, and
o™ =, o, @_.]"as well. The diagonal

elements of Q(®”") are especially written as shown
to guarantee the unit norm requirement even in the

presence of rounding errors and K is a constant to be
selected so that KAt < 1(Zipfel, 2000).

Magnetometer Error Modeling

Magnetometer output is corrupted by different
errors. These errors include biases (offsets), scale
factors, non-orthogonally parameters and setup
errors that can be categorized into two main groups
of environmental and instrumental errors.
Interfering magnetic fields, known as environmental
errors, consist of hard iron and soft iron errors
which are dependent on the data gathering or
sampling location. Although changing the test
environment reduces the environmental errors,
finding a magnetically isolated clean room is not
always feasible in practice.

Hard iron perturbations that stem from permanent
magnets or slow time-varying fieldsresult in-a fixed
magnetic deviation and thus are modeled as constant
bias for the test area, p" = [b)’(“' bf" bz’“"]T . In
contrast, the interaction of ferromagnetic material with an
external field induces magnetism that changes both the
direction and strength of the sensed field. This type of error
called soft iron effect depends on the data sampling
location and the instrumentations surrounding the TAM.
Soft iron effect is modeled via a symmetric matrix C* . In
addition to the environmental influences, instrumentation
errors such as biases (b = [, b, b1 ), scale factors

(S =diag(s,, S,, S.)), and misalignments (M) are the
other group of errors. Consequently, a comprehensive

measurement model for the TAM can be remarked as,

B, =SM(C'[H]” +b")+b" +v 3)

Where [H]® is the true geomagnetic field vector

expressed in the body coordinate system, and V is the
measurement noise. Furthermore, the above
formulation can be simply written as:

B, =C[HI’ +b+v “)

Where C=SMC" ad b=SMb" +b*.
Therefore, the problem of TAM calibration is reduced to
determination of matrix C and vector b which include
combined effects of error sources.

Journal of Aerospace Science and Technology /
Vol. 10/No. 2/ Summer - Fall 2013 19

The geomagnetic field expressed in body
coordinate system,[H]” , is provided by the available

information in the navigation coordinate system as
below:

H]" =7""[H]" ®)

where [H]" is the geomagnetic field vector expressed

in the navigation coordinate system; and calculated
using the international geomagnetic reference field
(IGRF) model (Finlay, Maus et al., 2010). Moreover,

T"is the transformation matrix of the body
coordinate system with respect to the navigation
coordinate system defined as a function of the
quaternion parameters as,

TBJ\/ -

2q9, +49:9.)
-4+ -G+
2(‘72‘/3 - ql‘h)

4~ 43— qitg;
z(qlqz - q3q4)
24,95 + 9:44)

2(q,9; _‘h‘h) (6)
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Attitude Determination and Magnetometer
Parameter Estimation

The measurement model described in the previous
section is a linear function of the TAM parameters,
while it is a nonlinear function of the vehicle attitude
characterized by the quaternion parameters. The
combined error parameters of TAM are modeled as
random walk process, i.e.

6=w (7)

Where 6 =[b Cii]r, i,j=1.3. wis the process
noise usually considered zero mean and white.

As it is shown in the next section, statistical
analysis of the measurement signals illustrates non-
Gaussian form of the probability distribution function
(pdf). Therefore, Gaussian approximation algorithms
such as EKF or UKF cannot estimate the attitude of
the vehiclein a correct and precise way. Nevertheless,
particle filter (PF) has been presented as a good
remedy to deal with non-Gaussian pdfs, butit
unfortunately ignores the most recent evidence and as
a result the state estimation performance degrades
(Van der Merwe et al., 2000). In this respect, PF is
hybridized with another filter like EKF or UKF to
improve theestimationefficiency. As UKF is more
efficient than EKF for state estimation of the nonlinear
dynamic systems, unscented particle filter (UPF) is
adopted in the present study to cope with the current
nonlinear/non-Gaussian problem of attitude estimation
(Van der Merwe, et al., 2000).

Since the dynamics and measurement equations
are linear with respect to TAM error parameters, a
linear Kalman filter (KF), known as an optimal
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estimator for Gaussian/Non-Gaussian linear systems is
used to estimate the linear part, while the nonlinear
part is handled with UPF.

An other issue about the considered attitude
determination (AD) and calibration model is that the
measurement noise has a variable power spectral
density (PSD) function that denotes the measurement
noise and is colored, as opposed to the white.

Colored noise is usually represented by a first
order Markov process. To handle the time-correlated
noise in the well-known filtering structure of
Kalman, Bryson and Henrikson (1968) developed
two strategies. The first approach augments the time-
correlated measurement error into the state vector.
This alternative is simple to implement, but increases
the state space dimension and subsequently raises the
run time. This method is also prone to divergence due
to the singularity of the updated error covariance
matrix. The second approach that is more complex is
based on time differencing. Petovello et al. (2009)
modified the measurement difference method to
compensate 1-epoch latency in the second method of
Bryson’s, but his method diverges if the state
transition matrix is ill conditioned. As a result, time
differencing approach is more likely to converge.
Recently, Wang et al. (2012) have proposed two new
algorithms to deal with numerical problem of state
augmentation alternative by perturbing the estimation
error covariance matrix (P) and regularizing' the
gain matrix. However, as the results show, perturbing
P provides a reasonable solution, if and only if the
perturbation amount is chosen appropriately, while
there is no assured strategy to tune it. On the other
hand, the other remedy is based on approximating the
gain matrix according to Tikhonov regularization
criterion. This approach needs a time-consuming
iterative optimization to control the approximation
error. Wang et al. (2012) have indicated that four
mentioned algorithms < have almost the same
accuracy, but the operating time of the perturbed- P
algorithm is the lowest. However, to avoid the ad-hoc
strategy for tuning the required perturbation in
perturbed- P algorithm, a time difference method is
generalized in the current work for nonlinear state
estimation in the presence of colored measurement
noise.

The general discrete form of the attitude
determination problem is as follows,

x, =f,_ (X)) +G W,

3
z,=h,(x,)+v, ©
VSV G (10

Where
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E(w,)=EE)=0 (11)
E(wszr) =Q,0,, E(C.:Aglr) =R,9,, E(WAQIT) =0

X, is the state vector at time f, ; W, is the process
noise vector, Z, is the measurement vector, V, is the
measurement noise and Y, is the transition matrix of
the colored noise. {, is the zero-mean Gaussian white
noise, £(X) is the expectation of X, O,is the
Kronecker delta function, and Q,and R, are the

covariance matrices of W, and ,, respectively. In

order to make the measurement noise white, it is
sufficient to introduce an-auxiliary vector as below,

£

2, =Z, —VY,,Z;,
=(h, -y h )+ (12)
= h; +Cy

Regarding this vector as the new measurement
vector, in addition to discrete dynamic system in eq.
(8), an appropriate state space is now defined to utilize
the Kalman filter for TAM calibration and the UPF for
attitude determination.

Experiments and Analysis

To assess the performance of the proposed attitude
determination and the calibration algorithm,
laboratory experiments are conducted on a
Honeywell HMCS5883L 3D magnetometer in the
noisy laboratory environment. HMCS5883L is
utilized in different areas such as auto navigation
systems, mobile phones, consumer electronics, and
personal navigation devices.

Allan variance (AV) is a simple method to model
the sensor noise components (Hou, 2004). AV analysis
is applied to the recorded TAM measurements in a
static test lasting6 hours and sampled at the frequency
of 10 Hz. Figure 1 shows the corresponding Allan
deviation for the three axes of HMCS5883L TAM. This
figure clearly indicates that the bias instability and
drift rate ramp are the dominant noise components
along all the three axes. Figure 2 depicts the
logarithmic diagram of noise power spectral density
(PSD) versus the frequency. This figure obviously
illustrates that x, y, and z noise components are pink
and brown with powers of 1.9, 1.2 and 2.3,
respectively. Probability density functions (pdfs) of the
tested HMC5883L components are depicted in Figure
3. It is observed that all three axes have bimodal
distributions, as opposed to Gaussian.
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Figure 2. Power spectral density of TAM components
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Figure 3. Probability density function (PDF) of TAM
components
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Complete calibration of a 3D field sensor such as
TAM utilizing recursive estimation algorithms
requiresan angular velocity to meet the persistency of
excitation condition (Pittelkau, 2001). To this aim, the
HMCS5883L is set on a rotating turntable with an
approximate angular velocity of @®' =[0 0 201" (deg/ sec)

in a laboratory at Sharif University of technology (SUT).
Time history of the estimated combined error parameters
including scale factors, non-orthogonally parameters and
soft iron effect are depicted in Figure 4 and Figure 5.
Time history of the combined bias including hard iron
effect and sensor offset is also presented in Figure 6.Time
history of measurement residual (innovation) is also
shown in Figure 7. The zero-mean innovation depicted in
this figure undoubtedly verifies the performance of the
implemented estimation algorithm. Finally, Figure 8
depicts the time history of the innovations as well as their
pertinent 20 bounds. Note that the residual
measurement- has. remained in its +2¢ bounds. This
observation is another proof to confirm the validity of the
estimation process and reliability of the estimated states.
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Figure 4. Time history of estimated combined scale factors
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Figure S. Time history of estimated combined non-
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As emphasized earlier, attitude determination will be
performed subsequent to the TAM calibration to
demonstrate the effectiveness of the proposed
procedure. In this regard, Figure 9 shows the time
history of the estimated and true quaternion
parameters. It is worth mentioning that true attitude is
accessible due to the experimental set up and the
attitude kinematics. Figure 10 depicts the estimated
and true attitudes in terms of the Euler angles. In
addition, this figure compares the performance of the
proposed UPF with EKF for the current AD problem.
Since the current AD problem is non-Gaussian,
colored-noise EKF cannot fulfill the estimation
process and diverges, as indicated before. Calculation
of the root mean square error (RMSE) of estimated
Euler angles proves that estimation accuracy is less

than 0.6 deg in roll angle (@), 0.8 deg in pitch angle

(@), and 1 deg in yaw angle (). The achieved

accuracy is acceptable and suitable for most space
missions.
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Figure 7. Time history of estimated and true quaternion
parameters
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Figure 8. Time history of estimated and true Euler angles

Conclusion

Recursive / calibration procedure of a three-axis
magnetometer  (TAM) is presented for attitude
determination (AD) problem. Calibration module
consists of real time estimation of error parameters
including bias, scale factor and non-orthogonally
parameters. Calibration parameters are modeled as
random walk process and estimated via Kalman filter.
Statistical analysis over the sampled data for a micro
electro-mechanical sensor (MEMS)-based TAM,
Honeywell HMC5883L, using the Allan variance
method has introduced the main noise components as
well as the nature of the measurement noise color. In
addition, considering the resulting bimodal probability
density function of the measurement signals, a
colored-noise unscented particle filter (UPF) is
developed for the nonlinear attitude determination
problem.

The laboratory experiments on a Honeywell
HMCS5883L demonstrate the potential applicability
and acceptable performance of the colored-noise UPF
for AD and TAM calibration. Moreover, comparison
of the results emanating the proposed colored-noise
UPF with those of the extended Kalman filter (EKF)
provesa superior performance of the implemented UPF
for AD application. Analysis of the root mean square
error of the estimated attitude demonstrates that the
vehicle attitude is determined with an accuracy of less
than one degree for all axes. This is an ideal result;
given the fact that MEMS-based magnetometer has
been utilized.

Although, the experiments have been performed under
approximately fixed temperature condition, the
temperature dependency of the MEMS magnetometer
such as the utilized HMC5883L is of importance for
real world application. This issue will be further
investigated by the authors to facilitate future
integrated application of the calibrated TAM sensor
for attitude estimation.


www.SID.ir

Real Time Calibration of Strap-down Three-Axis-Magnetometer ...

References

. Beravs, T., Begus, S., Podobnik, J. and Munih,
M., “Magnetometer Calibration Using Kalman
Filter Covariance Matrix for Online Estimation of
Magnetic Field Orientation,” /EEE Transactions
on Instrumentation and Measurement, Vol. 63,
No. 8, 2014, pp. 2013-2020.

. Bryson, A. E. Jr. and Henrikson, L.J., 1968,
Estimation Using Sampled Data Containing
Sequentially Correlated Noise, Journal of
Spacecraft and Rockets, Vol. 5, pp. 662-665.

. Crassidis, J. L., Lai K. L., Harman, R. R., “Real-
Time Attitude-Independent Three-Axis
Magnetometer Calibration,” Journal of Guidance,
Control and Dynamics, Vol. 28, No.1, 2005, pp.
115-120.

. Finlay, C. C., Maus S. Beggan C. D,
International Geomagnetic Reference Field: The
Eleventh  Generation, Geophysical Journal
international, Vol. 183, 2010, pp. 1216-1230.

. Gebre-Egziabher, D., Elkaim, G. H., Powell, J. D.
and Parkinson, B. W., “A Nonlinear, Two-Step
Algorithm for Calibration Solid-State Strap
Down Magnetometers,” Proceeding of 8"

International Conference on Navigation Systems,
St. Petersburg, Russia, 2001, pp. 200-299.

. Hou, H., Modeling Inertial Sensors Errors/ using
Allan Variance, [M. Sc. Thesis], Department of
Geomatics Engineering, University of Calgary,
2004.

. Petovello, M. G., O’Keefe, K., Lachapelle, G.
and Cannon M. E., “Consideration of Time-
Correlated Errors in a Kalman Filter Applicable
to GNSS,” Journal Geodesy, 2009, Vol. 83, pp.
51-59.

. Pittelkau, M. E., “Kalman Filtering for Spacecraft
System Alignment Calibration,” Journal of
Guidance, Control, and Dynamics, Vol. 24, No.6,
2001, 1187-1195..

10.

11.

12.

13.

14.

15.

16.

17.

Journal of Aerospace Science and Technology /
Vol. 10/ No. 2/ Summer - Fall 2013 23

Soken H. S. and hajiyev C., , Reconfigurable UKF
for In-Flight Magnetometer Calibration and Attitude
Parameter Estimation, 18" IFAC World Congress,
Milano-Italy, Vol. 18, No. 1, 2011, pp. 741-746.

Shuster D.M., A Survey of Attitude
Representations, Journal of the Astronautically
Sciences, Vol. 41, No. 3, 1993, pp. 439-517

Van der Merwe, R., Doucet, A., de Freitas, J. F.
G., Wan, E., “The Unscented Particle Filter,”
Advances in Neural Information Processing
Systems, 2000, pp. 1-7.

Vasconcelos J. F., Elkaim G., Silvestre C., Oliveira
P., Cardeira B., “A Geometric Approach to Strap
down Magnetometer Calibration in Sensor Frame,”

IEEE transactions on Aerospace and Electronic
Systems, Vol. 47, No. 2,2011, pp. 1293-1306.

Wang, K., Li, Y. and Rizos, C., “Practical
Approaches. to Kalman Filtering with Time-
Correlated Measurement Errors,” IEEE

Transactions on Aerospace and Electronic Systems,
Vol. 48, No. 2,2012, pp. 1669-1681.

Wu Z., Wu Y., Hu X., Wu M., “Calibration of
Three-Axis Strap down Magnetometers Using
Particle Swarm Optimization Algorithm,” [EEE
International Symposium on Robotic and Sensors
Environments (ROSE), 2011, pp. 160-165.

Zhang, X. and Gao, L., “A Novel Auto-Calibration
Method of the Vector Magnetometer,” The 9"
International Conference on Electronic Measurement
and Instruments, 2009.

Zhang, Z. and Yang, G., “Micro Magnetometer
Calibration for Accurate Orientation Estimation,”
IEEE Transactions on Biomedical Engineering,
Vol. 99, 2014, pp. 1-8.

Zipfel P. H., Modeling and Simulation of
Aerospace Vehicle Dynamics, edited by J. S.
Przemieniecki, Progress in Astronautics and
Aeronautics, AIAA, New York, 2000, pp. 122-125
and 181-185.


www.SID.ir

