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such as low cost, small size, lightweight, reliability 
and low power requirements are some of the key 
reasons for its widespread application (Wu et al., 
2011). TAMs can provide suitable estimations of space 
system attitude and position via measuring the 
geomagnetic field along the body axes. There for e, 
TAM has been selected as the most popular attitude 
sensor in cube satellites. However, due to a number of 
limitations and inadequacies in manufacturing, 
installation and material as well as the environmental 
influences, their output is usually contaminated with 
different errors. In general, bias, scale factor and non-
orthogonally parameters are the most important error 
parameters for three-dimensional (3D) field sensors 
like TAMs. Obviously, such erroneous measurements 
cannot provide accurate estimations of the vehicle’s 
attitude or position, hence, sensor calibration is an 
essential requirement for the purpose of precise 
navigation.  

Magnetometer calibration is not a new topic and 
has been addressed in numerous researches before. 
There is a wide variety of mathematical methods for 
sensor calibration, but they can all be classified into 
two main groups of batch estimation and recursive 
estimation. Batch estimators need a batch of measured 
data to provide an estimation of the parameter and/or 
state vectors, while the recursive filters estimate the 
parameters or states recursively upon the progressive 
receipt of the measurement data. The method of least 
square error is the most widespread scheme utilized for 
offline calibration of TAMs. Zhang et al. (2014) have 
utilized the homogenous least square error method to 
estimate the error parameters and orientation. 
Furthermore, Zhang et al. (2009) have transformed the 
TAM calibration problem to an ellipsoid-fitting issue 
and adopted the direct least square scheme for its 

solution. Wu et al. (2011) have transformed the 
nonlinear problem of attitude-independent TAM 
calibration to a parameter optimization problem using 
particle swarm optimization (PSO). It is claimed that 
PSO-based calibration provides better results as 
compared with the so-called two-step method (Gebre-
Egziabher &Elkaim, 2011).  

Since most of the dominant sources of sensor 
errors are usually time varying, offline calibration 
cannot compensate their effects completely. In this 
regard, Crassidis et al. (2005) have used nonlinear 
filters of the extended Kalman filter (EKF) and the 
unscented Kalman filter (UKF) for the sequential 
calibration of the TAM in real time. It is shown that 
the accuracy level of both filters are the same, but 
UKF is more robust against large initial errors. Soken 
and Hajiev (2011) have also utilized a reconfigurable 
UKF to estimate bias and scale factor parameters as 
part of an attitude estimation problem. Beravs et al. 
(2014) have utilized a precise 3D Helmholtz coil for 
the magnetometer calibration using UKF. Their 
proposed method repeatedly uses the covariance 

matrix decomposition for the estimation of the 
maximal sensitivity axis to assess the next best 
orientation of the coil magnetic field. Vasconcelos et 
al. (2011) have formulated a maximum likelihood 
estimator to find the optimal calibration parameters 
iteratively. Initial conditions for the iterative algorithm 
are also obtained using a suboptimal batch least square 
computation.  

In the present study, recursive calibration of 
TAM in a noisy test facility is considered,where the 
error parameters are modeled as a random walk 
process. Kalman filter is the optimal choicefor the 
parameter estimation of such linear systems. 
However, Investigation of the stochastic behavior of 
the tested Honeywell TAM disclosed non-
Gaussian/non-white behavior of the measured 
signals. Therefore, a colored-noise unscented particle 
filter (UPF) was further developed to cope with the 
nonlinear problem of attitude estimation using the 
calibrated TAM.  

The remaining sections of this paper are 
organized as follows. First, the attitude kinematics is 
described. Next, the magnetometer errors and the 
pertinent modelings are introduced. Subsequently, the 
calibration algorithm is elaborated on, followed by 
experimental results obtained from the laboratory tests 
of a Honeywell HMC5883L magnetometer. The final 
part of the paper summarizes the results and addresses 
some future prospects for further research. 

Attitude Kinematics 

Attitude kinematics describes how the orientation of a 
vehicle changes under the influence of its angular 
velocity. There are various methods to represent the 
vehicle’s attitude such as the Euler angles, quaternion 
parameters, Gibbs vector, direction cosine matrix, etc. 
(Shuster, 1993). The method of quaternion parameters 
is the most desired and widely used means to 
characterize the attitude, due to its linear propagation 
equation and its non-singular feature for any arbitrary 
rotation angle. The constraint of unit norm is the only 
disadvantage of the quaternion parameters which 
needs to be met in every estimation problem. 
The quaternion parameters can propagate in time as 
follows (Zipfel, 2000),  

qq )(
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In which Tnnn ][ 321n is the axis of rotation and 

  is the angle of rotation. 4q is also considered the 

scalar part of the quaternion, q , qqT 1 , and 
T

zyx
BN ][ ω as well. The diagonal 

elements of )( BNω are especially written as shown 

to guarantee the unit norm requirement even in the 
presence of rounding errors and K is a constant to be 
selected so that 1tK (Zipfel, 2000).  

Magnetometer Error Modeling 

Magnetometer output is corrupted by different 
errors. These errors include biases (offsets), scale 
factors, non-orthogonally parameters and setup 
errors that can be categorized into two main groups 
of environmental and instrumental errors. 
Interfering magnetic fields, known as environmental 
errors, consist of hard iron and soft iron errors 
which are dependent on the data gathering or 
sampling location. Although changing the test 
environment reduces the environmental errors, 
finding a magnetically isolated clean room is not 
always feasible in practice.  

Hard iron perturbations that stem from permanent 
magnets or slow time-varying fieldsresult in a fixed 
magnetic deviation and thus are modeled as constant 
bias for the test area, Thi

z
hi
y

hi
x

hi bbb ][b . In 

contrast, the interaction of ferromagnetic material with an 
external field induces magnetism that changes both the 
direction and strength of the sensed field. This type of error 
called soft iron effect depends on the data sampling 
location and the instrumentations surrounding the TAM.  

Soft iron effect is modeled via a symmetric matrix siC . In 
addition to the environmental influences, instrumentation 
errors such as biases ( T

zyx
so bbb ][b ), scale factors  

( ),,( zyx SSSdiagS ), and misalignments ( M ) are the 

other group of errors. Consequently, a comprehensive 
measurement model for the TAM can be remarked as,  

vbbHCSMB  sohiBsi
m )][(                          (3) 

Where B][H  is the true geomagnetic field vector 

expressed in the body coordinate system, and v  is the 
measurement noise. Furthermore, the above 
formulation can be simply written as: 

vbHCB  B
m ][                                                     (4) 

Where siSMCC   and sohi bSMbb  . 
Therefore, the problem of  TAM calibration is reduced to 
determination of matrix C  and vector b which include 
combined effects of error sources. 

The geomagnetic field expressed in body 

coordinate system, B][H , is provided by the available 

information in the navigation coordinate system as 
below: 

NBNB T ][][ HH                                                          (5) 

where N][H is the geomagnetic field vector expressed 

in the navigation coordinate system; and calculated 
using the international geomagnetic reference field 
(IGRF) model (Finlay, Maus et al., 2010). Moreover, 

BNT is the transformation matrix of the body 
coordinate system with respect to the navigation 
coordinate system defined as a function of the 
quaternion parameters as, 
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Attitude Determination and Magnetometer 
Parameter Estimation 

The measurement model described in the previous 
section is a linear function of the TAM parameters, 
while it is a nonlinear function of the vehicle attitude 
characterized by the quaternion parameters. The 
combined error parameters of TAM are modeled as 
random walk process, i.e.  

w                                                                        (7) 

Where 3..1,,][  jiC T
ijb . w is the process 

noise usually considered zero mean and white. 

As it is shown in the next section, statistical 
analysis of the measurement signals illustrates non-
Gaussian form of the probability distribution function 
(pdf). Therefore, Gaussian approximation algorithms 
such as EKF or UKF cannot estimate the attitude of 
the vehiclein a correct and precise way. Nevertheless, 
particle filter (PF) has been presented as a good 
remedy to deal with non-Gaussian pdfs, butit 
unfortunately ignores the most recent evidence and as 
a result the state estimation performance degrades 
(Van der Merwe et al., 2000). In this respect, PF is 
hybridized with another filter like EKF or UKF to 
improve theestimationefficiency. As UKF is more 
efficient than EKF for state estimation of the nonlinear 
dynamic systems, unscented particle filter (UPF) is 
adopted in the present study to cope with the current 
nonlinear/non-Gaussian problem of attitude estimation 
(Van der Merwe, et al., 2000).  

Since the dynamics and measurement equations 
are linear with respect to TAM error parameters, a 
linear Kalman filter (KF), known as an optimal 
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estimator for Gaussian/Non-Gaussian linear systems is 
used to estimate the linear part, while the nonlinear 
part is handled with UPF. 

An other issue about the considered attitude 
determination (AD) and calibration model is that the 
measurement noise has a variable power spectral 
density (PSD) function that denotes the measurement 
noise and is colored, as opposed to the white.  

Colored noise is usually represented by a first 
order Markov process. To handle the time-correlated 
noise in the well-known filtering structure of 
Kalman, Bryson and Henrikson (1968) developed 
two strategies. The first approach augments the time-
correlated measurement error into the state vector. 
This alternative is simple to implement, but increases 
the state space dimension and subsequently raises the 
run time. This method is also prone to divergence due 
to the singularity of the updated error covariance 
matrix. The second approach that is more complex is 
based on time differencing. Petovello et al. (2009) 
modified the measurement difference method to 
compensate 1-epoch latency in the second method of 
Bryson’s, but his method diverges if the state 
transition matrix is ill conditioned. As a result, time 
differencing approach is more likely to converge. 
Recently, Wang et al. (2012) have proposed two new 
algorithms to deal with numerical problem of state 
augmentation alternative by perturbing the estimation 
error covariance matrix ( P ) and regularizing the 
gain matrix. However, as the results show, perturbing 
P  provides a reasonable solution, if and only if the 
perturbation amount is chosen appropriately, while 
there is no assured strategy to tune it. On the other 
hand, the other remedy is based on approximating the 
gain matrix according to Tikhonov regularization 
criterion. This approach needs a time-consuming 
iterative optimization to control the approximation 
error. Wang et al. (2012) have indicated that four 
mentioned algorithms have almost the same 
accuracy, but the operating time of the perturbed- P  
algorithm is the lowest. However, to avoid the ad-hoc 
strategy for tuning the required perturbation in 
perturbed- P algorithm, a time difference method is 
generalized in the current work for nonlinear state 
estimation in the presence of colored measurement 
noise.  

The general discrete form of the attitude 
determination problem is as follows, 

1111 )(   kkkkk wGxfx
                                 (8)
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kx
 
is the state vector at time kt ; kw is the process 

noise vector, kz is the measurement vector, kv is the 

measurement noise and kψ is the transition matrix of 

the colored noise. kζ is the zero-mean Gaussian white 

noise, )(xE is the expectation of x , kl is the 

Kronecker delta function, and kQ and kR are the 

covariance matrices of kw  and kζ , respectively. In 

order to make the measurement noise white, it is 
sufficient to introduce an auxiliary vector as below,  
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Regarding this vector as the new measurement 
vector, in addition to discrete dynamic system in eq. 
(8), an appropriate state space is now defined to utilize 
the Kalman filter for TAM calibration and the UPF for 
attitude determination.  

Experiments and Analysis 

To assess the performance of the proposed attitude 
determination and the calibration algorithm, 
laboratory experiments are conducted on a 
Honeywell HMC5883L 3D magnetometer in the 
noisy laboratory environment. HMC5883L is 
utilized in different areas such as auto navigation 
systems, mobile phones, consumer electronics, and 
personal navigation devices.  

Allan variance (AV) is a simple method to model 
the sensor noise components (Hou, 2004). AV analysis 
is applied to the recorded TAM measurements in a 
static test lasting6 hours and sampled at the frequency 
of 10 Hz. Figure 1 shows the corresponding Allan 
deviation for the three axes of HMC5883L TAM. This 
figure clearly indicates that the bias instability and 
drift rate ramp are the dominant noise components 
along all the three axes. Figure 2 depicts the 
logarithmic diagram of noise power spectral density 
(PSD) versus the frequency. This figure obviously 
illustrates that x, y, and z noise components are pink 
and brown with powers of 1.9, 1.2 and 2.3, 
respectively. Probability density functions (pdfs) of the 
tested HMC5883L components are depicted in Figure 
3. It is observed that all three axes have bimodal 
distributions, as opposed to Gaussian. 
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Figure 1. Honeywell HMC5883L Allan variance results 

 

Figure 2. Power spectral density of TAM components 

 

Figure 3. Probability density function (PDF) of TAM 
components 

Complete calibration of a 3D field sensor such as 
TAM utilizing recursive estimation algorithms 
requiresan angular velocity to meet the persistency of 
excitation condition (Pittelkau, 2001). To this aim, the 
HMC5883L is set on a rotating turntable with an 
approximate angular velocity of [0 0 20] (deg/ sec)BN Tω  
in a laboratory at Sharif University of technology (SUT). 
Time history of the estimated combined error parameters 
including scale factors, non-orthogonally parameters and 
soft iron effect are depicted in Figure 4 and Figure 5. 
Time history of the combined bias including hard iron 
effect and sensor offset is also presented in Figure 6.Time 
history of measurement residual (innovation) is also 
shown in Figure 7. The zero-mean innovation depicted in 
this figure undoubtedly verifies the performance of the 
implemented estimation algorithm. Finally, Figure 8 
depicts the time history of  the innovations as well as their 
pertinent 2  bounds. Note that the residual 
measurement has remained in its 2 bounds. This 
observation is another proof to confirm the validity of the 
estimation process and reliability of the estimated states. 
 

 

Figure 4. Time history of estimated combined scale factors 

 

Figure 5. Time history of estimated combined non-
orthogonally parameters 
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Figure 6. Innovation and pertinent 2  bounds 

As emphasized earlier, attitude determination will be 
performed subsequent to the TAM calibration to 
demonstrate the effectiveness of the proposed 
procedure. In this regard, Figure 9 shows the time 
history of the estimated and true quaternion 
parameters. It is worth mentioning that true attitude is 
accessible due to the experimental set up and the 
attitude kinematics. Figure 10 depicts the estimated 
and true attitudes in terms of the Euler angles. In 
addition, this figure compares the performance of the 
proposed UPF with EKF for the current AD problem. 
Since the current AD problem is non-Gaussian, 
colored-noise EKF cannot fulfill the estimation 
process and diverges, as indicated before. Calculation 
of the root mean square error (RMSE) of estimated 
Euler angles proves that estimation accuracy is less 
than 0.6 deg in roll angle ( ), 0.8 deg in pitch angle 

( ), and 1 deg in yaw angle ( ). The achieved 

accuracy is acceptable and suitable for most space 
missions.  
 

 

Figure 7. Time history of estimated and true quaternion 
parameters 

 

Figure 8. Time history of estimated and true Euler angles 

Conclusion 

Recursive calibration procedure of a three-axis 
magnetometer (TAM) is presented for attitude 
determination (AD) problem. Calibration module 
consists of real time estimation of error parameters 
including bias, scale factor and non-orthogonally 
parameters. Calibration parameters are modeled as 
random walk process and estimated via Kalman filter.  
Statistical analysis over the sampled data for a micro 
electro-mechanical sensor (MEMS)-based TAM, 
Honeywell HMC5883L, using the Allan variance 
method has introduced the main noise components as 
well as the nature of the measurement noise color. In 
addition, considering the resulting bimodal probability 
density function of the measurement signals, a 
colored-noise unscented particle filter (UPF) is 
developed for the nonlinear attitude determination 
problem.  

The laboratory experiments on a Honeywell 
HMC5883L demonstrate the potential applicability 
and acceptable performance of the colored-noise UPF 
for AD and TAM calibration. Moreover, comparison 
of the results emanating the proposed colored-noise 
UPF with those of the extended Kalman filter (EKF) 
provesa superior performance of the implemented UPF 
for AD application. Analysis of the root mean square 
error of the estimated attitude demonstrates that the 
vehicle attitude is determined with an accuracy of less 
than one degree for all axes. This is an ideal result; 
given the fact that MEMS-based magnetometer has 
been utilized. 
Although, the experiments have been performed under 
approximately fixed temperature condition, the 
temperature dependency of the MEMS magnetometer 
such as the utilized HMC5883L is of importance for 
real world application. This issue will be further 
investigated by the authors to facilitate future 
integrated application of the calibrated TAM sensor 
for attitude estimation.  
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