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Abstract 

Epithelial Ovarian cancer is the leading cause of cancer mortality among women all 
over the world. As chemotherapeutics has many side effects, researchers have focused 
on the potential use of medicinal plants as natural antitumor agents. Xanthium 
strumarium studied in this work as an herbal anticancer agent. This study aimed to 
evaluate the antitumor effect and metabolic alterations caused by the root extract of X. 
strumarium on human ovarian cancer cell line (A2780cp), using NMR-based 
metabolomics approaches. Cells were cultured and treated with different concentrations 
of the ethanolic plant extract. Antitumor activity determined by MTT assay and cell 
metabolites extracted for NMR spectroscopy. 1H NMR spectroscopy was applied, and 
outliers were analyzed using multivariate statistical analysis techniques. The extract 
exhibited antitumor activity against ovarian cancer cells with an IC50 of 6 μg/ml after 48 
hours of treatment. The most affected metabolic pathways in the experimental groups 
were limited to tyrosine metabolism, nucleotide metabolism, fatty acid biosynthesis, and 
glycerolipid metabolism. Our data showed that the ethanolic root extract of X. 
strumarium has antitumor activity on the ovarian cancer cells and can affect vital 
metabolic pathways. However, further studies required to validate this activity. 
 
Keywords: Xanthium strumarium; Epithelial ovarian cancer; A2780cp cell line; Metabolomics; 1H NMR. 
 

                                                        
* Corresponding author:  Tel: +982164112140; Fax: +982164112100; Email: arjmand1@yahoo.com 

Introduction 
Cancer is a genetic disease caused by uncontrolled 

cell growth in the absence or disruption of cell cycle 
regulation, resulting in DNA damage [1]. Ovarian 
cancer is the fifth most common cancer in women and 
has the highest mortality rate among different types of 

cancers. Globally, the number of people get diagnosed 
with ovarian cancer is about 225,000, with 140,200 
deaths per year [2]. During 2019, the American Cancer 
Society estimated that approximately 22,530 women 
diagnosed with ovarian cancer, among which 
about13,980 patients have died. About 90 % of all 
malignant tumors are epithelial, originating from areas 
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around the ovary, such as fallopian tubes and 
peritoneum [3]. The most effective chemotherapy drugs 
used to treat ovarian cancer are platinum analogs such 
as cisplatin and carboplatin. In most patients with 
advanced ovarian cancer, the disease recurs, associated 
with rising serum CA125 levels [4]. Treatment of 
ovarian cancer with conventional chemotherapy drugs 
can cause side effects. Natural compounds can prevent 
the development of invasive cancer with limited side 
effects. Hence, researchers have focused on the 
potential use of medicinal plants as natural anticancer 
agents [5]. 

X. Strumarium scrutinized in this investigation. The 
plant belongs to the Asteraceae (Compositae) family 
and commonly seen as a weed. It has widely grown in 
North America, Brazil, China, Malaysia, India, and Iran. 
Multiple studies have shown pharmacological effects of 
X. strumarium, including the anticancer impact on 
various types of cancers [6]. The inhibitory effect of 
leave extract of X. strumarium against cancer cell lines 
of A549 (lung), skov3 (ovary), SK-MEL-2 (Melanoma), 
XF498 (CNS) and HTC-15 (colon) reported. It was 
found that the seed extract of X. strumarium can inhibit 
the proliferation of HEPG2, Jurkat, L929, and A549 
cancer cell lines. Fruit extract of X. strumarium had an 
antitumor effect against U937 and Jurkat cancer cell 
lines. The cytotoxic effect of root extract of X. 
strumarium on S180 and HEPG2 cancer cell lines have 
also demonstrated. A purified extract of aerial parts of 
X. strumarium possessed apparent antitumor activity on 
CT26 cancer cells. Several chemical compounds 
isolated from the roots of X. strumarium, among which 
coumarin was found only in the root of this plant [7]. 
Coumarin derivatives could inhibit the growth in human 
cancer cell lines such as HL-60 (leukemia), MCF7 
(breast), H727 (lung), A549 (lung), and ACHN (renal). 
A coumarin derivative also had anticancer activity 
against ovarian cancer cell lines (OVCAR-3) [8].  
Coumarin could be an active agent for treating side 
effects caused by radiotherapy [7]. Since the root of the 
X. strumarium plant enriched with coumarin, we would 
like to evaluate the antitumor potentiality of this extract.  

Metabolomics is a powerful analytical tool to identify 
and detect qualitative changes in metabolites of 
biological systems and samples, resulting in recognizing 
the metabolites' biochemical pathways [9]. 1H-NMR-
based metabolomics is an emerging technology used to 
characterize cancer metabolism, with potential 
applications in clinical diagnosis or treatment of cancer 
[10]. 

The present study focuses on the antitumor effect of 
root extract of X. strumarium on the human ovarian 
cancer cell line(A2780cp) to find out if the obtained 

extract is effective in inhibiting the growth of epithelial 
ovarian cancer cells. Finally, altered metabolites and the 
most important metabolic pathways influenced by root 
extract were identified, using the human metabolome 
database (HMDB) and MetaboAnalyst software. 

 

Materials and Methods 
Plant Extract 

Roots of X. strumarium collected from a region in 
Kermanshah, Iran, and authenticated by Central 
Herbarium of Tehran University under voucher No 
48241. Collected plants were washed and dried at 
ambient temperature. 50 g of roots were powdered and 
extracted with 500 ml of 80% ethanol by the Soxhlet 
apparatus. The solvent removed by Rotary evaporator, 
the pure extract stored in a sterile container at 4°C for 
further use. 
 
Cancer Cell Culture 

A2780CP (human ovarian cancer cell line) obtained 
from the cell bank of Pasteur Institute of Iran. Cells 
were cultured in RPMI-1640 medium containing 10% 
FBS and penicillin/streptomycin (100X) as an antibiotic 
(Gibco). Cells were maintained and grown in a CO2 
incubator at 37°C until they reached above 85% 
confluency. A fixed number of cells (2×106 

/ml ) used for 
all assays. 

ݕݐ݈ܾܸ݅݅ܽ݅ %  = ݐ݊ݑ݋ܿ ݈݈݁ܿ ݈ܽݐ݋ݐ ݐ݊ݑ݋ܿ ݈݈݁ܿ ݁ݒ݅ܮ  × 100 
 

 
Determination of Total Phenolic Content (TPC) 

The concentration of total phenolics of X. 
strumarium root extract determined by the Folin-
Ciocalteu test and external calibration with gallic acid as 
standard [11]. 
 
MTT assay 

The effect of root extracts on cell growth measured 
by the MTT (3-4,5 dimethylthiazol-2,5 diphenyl 
tetrazolium bromide) assay. One mL cell suspension 
(2×106cells/ml)   was seeded into eight wells of a 96-well 
plate and incubated for 24hour. The monolayer of cells 
in each well was exposed to different concentrations 
(600, 60,30,15,12,7.5, 6 ,and 0.6 μg/ml) of plant root 
extract for 48 hours to determine the IC50. MTT (20 µL) 
was added to each well and then incubated for 3 hours. 
After this, 180 µL of DMSO was added to each well 
and shake. The absorbance was read at 540 nm by Eliza 
Reader [1]. The Percentage of growth inhibition as 
calculated as follows: 
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In the current study, many metabolites were altered 
after treated with the X. strumarium root extract. 
Mapping these different metabolites to their 
biochemical pathways through HMDB and KEGG 
search revealed that the most affected metabolic 
pathways involved in cell growth inhibition were 
limited to tyrosine metabolism, nucleotide metabolism, 
fatty acid biosynthesis, and glycerolipid metabolism.  

Tyrosine, synthesized from phenylalanine, is 
metabolized by four enzymes. It catalyzed to fumarate 
and acetyl coenzyme A (acetyl-CoA). Fumarate is an 
intermediate in the tricarboxylic acid cycle in which 
ATP is produced [17]. 

Tyrosine and phenylalanine were higher in ovarian 
cancer cell lines compared to healthy cells. Similarly, 

higher TCA cycle intermediates (including succinate, 
fumarate, and malate) have observed in tissue samples 
from ovarian carcinoma [18]. Increased levels of both 
branched-chain amino acids and aromatic amino acids 
are related to alterations in their transporter activity, L-
type amino acid transporter 1 (LAT1),  which is an 
essential molecule in the nutrition, proliferation, and 
migration of ovarian cancer cells [19].  

In this research, several metabolites altered in 
tyrosine metabolism. Hence, a comparison of our results 
with previous reports showed that the root extract could 
inhibit the growth of ovarian cancer cells, which may 
through disrupting the TCA cycle and inhibiting LAT1. 

Nucleotides are necessary for a variety of cellular 
processes. It has well-characterized that imbalances in 

Table 1. Altered hydrophilic metabolites and the most important metabolic pathways in A2780Cp ovarian cancer cells were 
influenced by the root extract of X. strumarium 

Raw P Hits Total Metabolites Metabolic pathway 
0.0002 7 76 L-tyrosine 

Iodotyrosine 
L-dopa 

3,5-Diiodo-L-tyrosine 
3,4-Dihydroxyhydrocinnamic acid 

Dopamine 
Normetanephrine 

Tyrosine metabolism 

0.0032 6 88 Glucose1-phosphate 
Glucose 6-phosphate 

D-mannose 
D-xylose 

Glucosamine 6-phosphate 
Fructose 6-phosphate 

Amino sugar and nucleotide sugar 
metabolism 

0.0116 4 53 L-Arabitol 
Glucose 1-phosphate 

D-xylose 
Fructose 6-phosphate 

Pentose and glucuronate 
interconversions 

0.0312 3 41 D-mannose 
Glucose1-phosphate 
Glucose 6-phosphate 

Galactose metabolism 

0.0517 3 50 Glucose1-phosphate 
Glucose 6-phosphate 

D-xylose 

Starch and sucrose metabolism 

Total, the total number of compounds in the pathway; Hits, the actual matched number from the user uploaded data; Raw p, the original p-value 
calculated from the enrichment analysis, using MetaboAnalyst database 

 
Table 2. Altered lipophilic metabolites and the most important metabolic pathways in A2780Cp ovarian cancer cells were 
influenced by the root extract of X. strumarium 

Raw p Hits Total Metabolites Metabolic pathway 
0.0238 3 49 Capric acid 

Oleic acid 
Stearic acid 

Fatty acid biosynthesis 

0.062 2 32 Propylene glycol 
Triacylglycerol 

Glycerolipid metabolism 

0.1331 1 11 Pimelic acid Biotin metabolism 
0.2291 1 20 Cis-aconitic acid Citrate cycle (TCA cycle) 

Total, the total number of compounds in the pathway; Hits, the actual matched number from the user uploaded data; Raw p, the original p-value 
calculated from the enrichment analysis, using MetaboAnalyst database 
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nucleotide levels lead to a variety of human diseases, 
including cancer. Tumor cells have a higher need for 
dNTPs [20]. The synthesis of nucleotides begins with 
the formation of ribose-5-phosphate from glucose. 
Along with glutamine, which donates the necessary 
nitrogen, several modifications lead to the formation of 
nucleotides. A change in RRM1, RRM2, or p53R2 gene 
expression can lead to dNTP pool imbalances. 
Ultimately, this imbalance leads to replication stress and 
impaired DNA damage repair, which consequently 
increases DNA damage, genomic instability, and 
mutations. These ultimately contribute to cell 
transformation and cancer. Since nucleotide metabolism 
plays a role in transformation and tumor progression, 
inhibition of this pathway has long been considered a 
therapeutic strategy for cancer [21].  

 In this study, we observed that Glucose1-phosphate, 
Glucose 6-phosphate, D-mannose, D-xylose, 
Glucosamine 6-phosphate, and Fructose 6-phosphate 
altered in nucleotide metabolism. 

Alteration of glucose 1-phosphate and glucose 6-
phosphate can disrupt the glycolysis pathway. D-xylose 
linked to pentose and glucuronate interconversion 
pathway, so the change of this metabolite can disrupt 
this pathway leading to reduce energy in cancer cells.  
D-mannose directly linked to fructose and mannose 
metabolism, so alteration of this metabolite can disrupt 
fructose and mannose metabolism, also leading to 
inhibition of cancer cell's energy. Altered fructose 6-
phosphate is directly linking to the glycolysis pathway, 
can disrupt this pathway. According to the Warburg 
effect theory, cancer cells use glycolysis cycle as the 
most critical energy sources. Hence, it seems that 
fructose 6-phosphate can be a potential therapeutic 
target in ovarian cancer. A comparison of our findings 
with previous findings showed that the root extract 
could inhibit the growth of cancer cells, probably by 
disrupting DNA synthesis and reducing cellular energy. 

 Variation of lipid metabolism was detected in EOC 
patients at both the early and late stages of the disease 
and in patients with recurrent disease [22]. Fatty acid 
(FA) synthesis significantly depends on glucose through 
the production of acetyl-CoA, a central metabolic 
precursor. In tumor cells, most FAs are synthesized de 
novo by fatty acid synthase (FASN) to arrange the 
intensive bioenergetics and structural changes. Indeed, 
FASN has defined as a marker of cell proliferation and a 
drug target in oncology [23].  Increasing palmitic acid 
due to amplified expression of fatty acid synthase has a 
very close relationship with cirrhotic tissue in ovarian 
cancer and suppression of this enzyme activity leading 
to induce apoptosis and cancer cell death [24]. Another 
investigation has proposed that expression of fatty acid 

synthase gene significantly increases in a wide range of 
tumors (colon, prostate, breast, and ovary) by reasons of 
the insensitivity of tumor cells to regulatory messages 
and the higher tendency of cancer cells to de novo 
lipogenesis pathway [25].  

The involvement of stearic acid in cancer has 
reported, and such as induction of apoptosis that 
prevents the development of cancer cell formation; on 
the other hand, it has a negative role in DNA damage 
that promotes cell transformation and, in turn, tumor 
genesis24. It is also observed that a reduction in the ratio 
of stearic acid and oleic acid might serve as an 
indication of malignancy [26].  High level of oleic acid 
and low level of stearic acid reported in several cancer 
types such as breast, prostate, liver, pancreas, colon, and 
lung [27].  Another study also showed that oleic acid 
blocked the activity of fatty acid synthase and 
accumulated malonyl CoA, which led to the suppression 
of HER2 oncogene expression [28]. 

In the present study, capric acid, oleic acid, and 
stearic acid altered in Fatty acid biosynthesis. Thus, it 
seems that oleic acid and stearic acid can be potential 
therapeutic targets in ovarian cancer. A comparison of 
our results with previous investigations showed that the 
extract could inhibit the growth of cancer cells, 
probably through inhibition of FASN activity. 

Variations in the lipid metabolism, particularly serum 
triglycerides, have been observed in breast and ovarian 
cancer patients, representing evidence for a positive 
association between triglycerides and the risk of 
developing these cancers [29]. It revealed a positive 
correlation between serum TG levels with endometrial 
and colon cancer risk [30]. A few cohort studies have 
investigated the high serum triglyceride concentrations 
as a part of the metabolic syndrome about the risk of 
colon, breast, and cervix cancers. A cohort study among 
Icelanders revealed the associations between serum TG 
and thyroid cancer in men and with cervix, endometrial, 
and bladder cancer in women [31]. Positive associations 
also found with gynecological cancers among women.  

In this study, propylene glycol and triacylglycerol 
metabolites altered in glycerolipid metabolism. Hence, 
it seems that triacylglycerol can be a potential 
therapeutic target in ovarian cancer treatment. A 
comparison of our findings with earlier reports showed 
that the root extract could inhibit cancer cells' growth, 
probably by altering of triacylglycerol levels [32]. 
 
Conclusion 

In this preliminary study, an ethanolic root extract of 
X. strumarium exhibits antitumor activity even in low 
doses. It affects vital metabolic pathways of epithelial 
ovarian cancer cells, particularly lipid metabolism. 
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However, to confirm these activities, further research is 
underway to validate these findings along with the 
potential fractions of the root extract of this plant. 
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