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Abstract 

In this paper, the synthesis of various enaminones from the reaction of 3-
aminocoumarin and ethyl-2,4-dioxo-4-arylbutanoate in the presence of p-toluene 
sulfonic acid is reported. The reaction was examined under different solvents and 
catalytic systems, which clearly proved the importance of acidic catalyst in this organic 
transformation. This work was also accompanied by density functional theory (DFT) 
studies to justify the formation of final products. 
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Introduction 
Coumarin is an important structural unit that 

constitutes the core skeleton of many flavonoid 
compounds with various activities [1-4]. Additionally, 
coumarin-based molecules have been considered as a 
crucial starting material in organic synthesis. In 
particular, the synthesis and application of 3-
aminocoumarins have received great interest from 
medicinal chemists [5-8], regarding their wide range of 
biological activities, such as central nervous system 
(CNS) inhibitory activity [9], anti-bacterial [10], anti-
allergic [11], and anti-cancer properties [12,13].  The 3-
aminocoumarin core is also known as the main part of 
natural antibiotics such as novobiocin, chlorobiocin, and 
coumermycin [14]. Considering this fact, many 
synthetic methods have been reported for the 
construction of this heterocyclic core. The most popular 

reaction for the synthesis of this core occurred between 
salicylaldehyde and acetic anhydride, known as perkin 
reaction [15-18].  

   Enaminones are useful and fascinating building 
block (N–C=C–C=O) for the synthesis of heterocyclic 
compounds. The conjugation of carbonyl group with 
enamine moiety offered both nucleophilic and 
electrophilic sites by which further reactions occurred to 
afford various valuable molecules. Accordingly, the 
enaminone-heterocyclic hybrid systems, particularly 
coumarin, gave organic chemists the opportunity to 
synthesize novel compounds. 

Considering the importance of coumarin chemistry 
[15-19], herein, we investigated the reaction between 3-
aminocoumarin and α,γ-diketoester derivatives by using 
para-toluene sulfonic acid (p-TSA) as the catalyst.  
Utilizing the organic-soluble solid acid catalyst is the 
useful feature of our protocol compared to previous 
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reports. In previous reports, the inorganic acid, 
hydrochloric acid, was used by which corrosive effect 
on human tissue and irreversibly damage to respiratory 
organs, eyes, skin, and intestines are observed [20]. In 
this work, the starting material, 3-aminocoumarin, is 
synthesized from the reaction of N-acetylglycine and 
different salicylaldehyde derivatives, which hydrolyzed 
to 3-aminocoumarin under acidic condition. Then, 
according to our expertise [21-25], we investigated on 
the synthesis and computational studies of 4-oxo-2-((2-
oxo-2H-chromen-3-yl) amino) but-2-enoates. 

 

Materials and Methods 
Chemistry 

All commercially available chemicals were obtained 
from Merck and Aldrich, and used without further 
purifications. Melting points were measured with a 
Kofler hot stage apparatus and are uncorrected. 1H 
NMR (500 MHz) and 13C NMR (125 MHz) spectra 
were recorded on a Bruker FT-500, using 
tetramethylsilane (TMS) as an internal standard and 
DMSO-d6 as a solvent. Chemical shifts are expressed as 
δ (ppm). IR spectra were recorded on a Nicolet Magna 
FTIR 550 spectrophotometer using KBr disks in cm-1.  
 
General procedure for the synthesis of target 
compounds 

3-Aminocoumarin (1 mmol), various α-γ-diketoesters 
(1 mmol), and p-TSA (15 mol %) were refluxed in 
ethanol (10 mL). The reaction progress was checked by 
TLC (mobile phase ethyl acetate: petroleum ether (3:7))  
ff. After completion, the ice cold water was added to the 
reaction mixture to afford desired product. Further 
purification was accomplished by recrystallization from 
ethyl acetate/petroleum ether.  
 
Ethyl (Z)-4-oxo-2-((2-oxo-2H-chromen-3-yl) amino)-
4-phenylbut-2-enoate (5a) 

Yellow solid; yield: 88 %; mp 212-214 oC; 1H NMR 
(500 MHz, DMSO-d6) δ (ppm): 11.92 (s, 1H, NH), 7.98 
(d, 2H, J = 7.5 Hz), 7.56-7.41 (m, 5H), 7.33 (d, 1H, J = 
8 Hz), 7.28 (t, 1H, J = 7.0 Hz), 7.21 (s, 1H, CH), 6.70 
(s, 1H, CH), 4.34 (q, 2H, OCH2 J = 6.7 Hz), 1.32 (t, 3H, 
CH3, J = 6.5 Hz); 13C NMR (125 MHz, DMSO-d6): 
191.79, 163.66, 158.95, 151.13, 147.28, 138.46, 132.56, 
129.96, 128.60, 127.74, 127.01, 126.79, 125.11, 124.92, 
119.39, 116.47, 99.02, 62.46, 13.99. 

 
Ethyl (Z)-4-(4-fluorophenyl)-4-oxo-2-((2-oxo-2H-
chromen-3-yl) amino) but-2-enoate (5b) 

Yellow solid; yield: 80 %; mp 220-221 oC; IR (KBr, 
cm−1) νmax: 3413, 3342, 2363, 1733, 1613, 1478, 1459, 

1303, 1229; 1H NMR (500 MHz, DMSO-d6) δ (ppm): 
7.93-7.81 (m, 1H), 7.26-7.06 (m, 8H), 6.62 (s, 1H, CH), 
4.34 (q, 2H, OCH2 J = 6.7 Hz), 1.32 (t, 2H, CH3, J = 7.0 
Hz); 13C NMR (125 MHz, DMSO-d6): 189.13, 163.50, 
158.80 (d, J = 240 Hz), 151.19, 147.30, 133.82, 133.75, 
130.69, 130.05, 127.25 (d, J = 22 Hz), 126.62, 125.38, 
124.93, 119.34, 116.49, 102.76, 96.12, 62.46, 13.96. 
 
Ethyl (Z)-4-(4-chlorophenyl)-4-oxo-2-((2-oxo-2H-
chromen-3-yl) amino) but-2-enoate (5c) 

Yellow solid; yield: 78 %; mp 242-243 oC; IR (KBr, 
cm−1) νmax: 3336, 1712, 1163, 1589, 1501, 1459, 1309, 
1286, 1242; 1H NMR (500 MHz, DMSO-d6) δ (ppm): 
11.92 (s, 1H, NH), 7.91 (d, 2H, J = 8.0 Hz), 7.45-7.39 
(m, 5H), 7.33 (d, 1H, J = 8.0 Hz), 7.26 (t, 1H, J = 8.5 
Hz), 6.62 (s, 1H, CH), 4.34 (q, 2H, OCH2 J = 6.5 Hz), 
1.32 (t, 3H, CH3 J = 7.1 Hz); 13C NMR (125 MHz, 
DMSO-d6): 190.33, 163.47, 158.87, 151.21, 147.80, 
138.95, 136.81, 130.10, 129.13 (2C), 128.90, 127.07, 
126.69 (2C), 125.49, 124.96, 119.33, 98.35, 62.52, 
14.00. 
 
Ethyl (Z)-4-(4-bromophenyl)-4-oxo-2-((2-oxo-2H-
chromen-3-yl) amino) but-2-enoate (5d) 

Yellow solid; yield: 74 %; mp 232-234 °C; IR (KBr, 
cm−1) νmax: 3068, 2974, 1732, 1708, 1632, 1507, 1449, 
1370, 1285, 1239; 1H NMR (500 MHz, DMSO-d6): δ 
(ppm): 11.93 (s, 1H, NH), 8.11 (s, 1H), 7.90 (d, 2H, 
J=7.8 Hz), 7.67 (d, 2H, J = 8.1 Hz), 7.49-7.28 (m, 4H), 
6.61 (s, 1H, CH), 4.35 (q, 2H, OCH2, J = 7.2 Hz), 1.24 
(t, 3H, CH3, J = 7.1 Hz). 
 
Ethyl (Z)-4-(3-bromophenyl)-4-oxo-2-((2-oxo-2H-
chromen-3-yl) amino) but-2-enoate (5e) 

Yellow solid; yield: 77 %; mp 221-223 oC; IR (KBr, 
cm−1) νmax: 3071, 2969, 1741, 1718, 1642, 1511, 1451, 
1371, 1274, 1251; 1H NMR (500 MHz, DMSO-d6) δ 
(ppm): 11.92 (s, 1H, NH), 7.98 (d, 2H, J = 7.5 Hz), 
7.56-7.41 (m, 4H), 7.33 (d, 1H, J = 8.0 Hz), 7.28 (t, 1H, 
J = 7.1 Hz), 7.21 (s, 1H, CH), 6.70 (s, 1H, CH), 4.34 (q, 
2H, OCH2,  J = 6.7 Hz), 1.32 (t, 3H, CH3,  J = 6.5 Hz). 
 
Ethyl (Z)-4-(4-methoxyphenyl)-4-oxo-2-((2-oxo-2H-
chromen-3-yl) amino) but-2-enoate (5f) 

Yellow solid; yield: 79 %; mp 208-210 °C; IR (KBr, 
cm−1) νmax: 3074, 2967, 1735, 1710, 1641, 1511, 1452, 
1372, 1287, 1240; 1H NMR (500 MHz, DMSO-d6) δ 
(ppm): 11.88 (s, 1H, NH), 7.98-7.93 (m, 2H), 7.41-6.97 
(m, 7H), 6.68 (s, 1H, CH), 4.33 (q, 2H, OCH2, J = 6.5 
Hz), 3.88 (s, 3H, OCH3), 1.31 (t, 3H, CH3, J = 7.0 Hz); 
13C NMR (125 MHz, DMSO-d6): 190.40, 163.83, 
158.97, 150.99, 146.50, 131.30, 129.99, 129.73, 126.89, 
124.87, 124.38, 119.48, 116.42, 114.20, 113.83, 99.31, 
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97.71, 62.37, 55.55, 14.07. 
 

Results and Discussion 
Initially, various ethyl 2,4-dioxo-4-phenylbutanoates 

(3a-f) were synthesized by Claisen condensation 
reaction between diethyl malonoate (2) and different 
acetophenones (1a-f) in the presence of sodium 
ethoxide at room temperature. 3-Aminocoumarin was 
also prepared according to the previously reported 
procedure [26]. 

The reaction between 3-aminocoumarin and ethyl 
2,4-dioxo-4-phenylbutanoate was chosen as the model 
reaction and optimized under different conditions. 
Among these conditions, the best result was obtained 
with 15 mol% p-TSA as the catalyst and ethanol as the 
solvent. Lower or higher amounts of catalyst gave the 
final compound in lower yields even after long reaction 
times (Table 1, entries 1-4). The replacement of ethanol 
with acetonitrile led to lower yields. By utilizing 
polyphosphoric acid and iodine as catalyst in different 

 

 
Scheme 1. Synthesis of target compounds. 

a Isolated yields; b The reaction was conducted under reflux temperature; c The reaction was conducted at 80 oC; d Poly phosphoric acid and acetic 
acid were used as solvent and no catalyst was added. The reaction was also conducted at 80 oC. 

 
Table 1. Optimization of reaction condition 

Entry Catalyst (mol%) Solvent Time/h Yield (%)a 
 
1 
 
2 

 
p-TSA (5) 

 
p-TSA (10) 

 
Ethanolb 

 
Ethanolb 

 
24 
 

12 
 

 
55 
 

73 
 

3 p-TSA (15) Ethanolb 5 88 
 

4 p-TSA (20) 
 

Ethanolb 
 

48 
 

60 
 

5 
 

I2 (20) Acetonitrilec 10 45 

6 I2 (20) 
 

Acetic acid 10 50 

7 I2 (20) Ethanolc 10 63 
 

8 Poly phosphoric acid (20) Ethanolb 48 N.R. 
9 
 

--------- Acetic acidd 18 81 

10 
 

--------- Poly phosphoric acidd 48 20 



Vol. 31  No. 3  Summer 2020 P. Nouraie, et al. J. Sci. I. R. Iran 

216 

solvents, no improvement was achieved (Table 1, 
entries 5-8). We discovered that performing the reaction 
in acetic acid and polyphosphoric acid didn’t result in 
higher yields. (Table 1, ent ries 9-10). In addition, the 
reaction could not be completed or gave good yields 
without using catalyst.   

By this method, 6 enaminones were synthesized. The 
structure of target compounds was confirmed by IR, 1H 
NMR, and 13C NMR spectroscopy (Table 2). The 
presence of the singlet signal at nearly 6.70 ppm 
confirmed the enamine structure of final product. The 
singlet signal related to CH2 group was not detected in 
1HNMR. Relying on this fact, the possibility of imine 
formation become invalid. We also tried to convert final 
compounds to cyclized derivatives, but our attempts 
failed. The computational studies were selected to find 

out the reason. 
 
Computational studies 

DFT calculation was used to investigate the charge 
distribution and the type of highest occupied molecular 
orbital (HOMO), and lowest unoccupied molecular 
orbital (LUMO). In this study, DFT-based Becke’s 
three-parameters; Lee–Yang–Parr exchange-correlation 
(B3LYP) functional employing 6–31G (d) basis set was 
selected to optimize the final compounds. All these 
calculations were performed using GAUSSIAN 09 suit 
of program. 

It has been specified that the charge distribution 
amount on sp2 carbon atom of coumarin ring was low to 
neutral (-0.151). As a result of this charge distribution 
pattern, no cyclized product was obtained. The presence 

Table 2. Synthesized products from the reaction of α,γ-diketoester and 3-aminocoumarin 
Entry Compounds  Time/h Yield (%) Melting point 

(oC) 
5a 2.5 88 212-214 

5b 3.5 80 220-221 

5c 3 78 242-243 

5d 3.5 74 232-234 

5e 4 77 221-223 

5f 3.5 79 208-210 
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showed the transition state (TS) energy of two 
structures. The high steric hindrance prevented 1,3-
sigmatropic rearrangement, so, enamine structure was 
determined as the main product. 
 
Conclusion  

In summary, we described a mild approach to 
synthesize coumarin-enaminone containing compounds 
from the reaction of 3-aminocoumarin and α,γ-
diketoesters. The DFT study confirmed the progression 
of the reaction and explained the difficulty associated 
with obtaining the cyclized product. Further studies on 
this compound are under investigation by our research 
team. 
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