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Abstract 
Oligo-Miocene Bagh-e-Khoshk granitoid stock is intruded into the Eocene volcanic 

rocks in the southeastern part of the Urumieh-Dukhtar Magmatic assemblage in Iran. 
The granitoids are mainly consisting of diorite, quartz diorite and granodioritic rock 
types. They are metaluminous to slightly peraluminous, medium to high K calc-
alkaline, with SiO2 ranging from 50.2 to 66 wt.%. The major elements mostly define 
linear trends and negative slopes with increasing of SiO2, while K2O is positively 
correlated with silica. There is a higher content of Ba, Rb, Nb and Zr elements with 
increasing SiO2, whereas Sr shows an opposite behavior. Primordial mantle-normalized 
multi-element patterns show enrichment in LILE relative to HFSE with distinctive Nb, 
Ta, Ti negative anomalies. These signatures are typical of subduction related magmas 
that formed in an active continental margin. The high Ba/La Ba/TiO2, Ba/Nb and Th/Nb 
ratios emphasizes the significant involvement of fluids during subduction processes. 
The chondrite-normalized REE patterns of the Bagh-e-Khoshk granitoids show an 
enrichment in light REEs ((La/Yb)n = 3.84, 7.41), very slightly HREE fractionation 
patterns ([Gd/Yb]n=1.26–1.83)  and small positive Eu anomalies (EuN/EuN* = 1.01, 
1.44) in diorites. Whole-rock Sm–Nd isotope analysis give εNd values (+2.91 to +3.29) 
and Sr ratios (0.7046–0.7053). The geochemical characteristics, positive εNd and low 
Sr ratios of the Baghe-Khoshk granitoids suggest their formation from partial melting of 
the mantle wedge source, at pressures below the garnet stability field, modified by 
fluids during subduction processes.  
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Introduction 
Urumieh-Dukhtar Magmatic assemblage (UDMA) is 

a part of the Zagros orogenic belt (ZOB), with a NW-SE 

trend from eastern Turkey to southeast of Iran, that 
formed as a result of northward subduction of 
Neotethyan Ocean underneath the Central Iranian 
microcontinents (Fig. 1). UDMA has been interpreted to 
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of the Neotethys Ocean. The new ocean was expanded 
during Late Triassic to Early Jurassic, while pelagic 
marine carbonates were deposited in ZOB [5]. The ZOB 
consists of three parallel NW–SE trending units: Zagros 
folded-thrust Zone, Sanandaj-Sirjan Zone (SSZ) and 
Urumieh-Dukhtar Magmatic Arc (UDMA) [1, 6] (Fig. 
1a). Northward subduction of the Neotethys beneath the 
partially accreted Sanandaj-Sirjan zone (SSZ) is 
recorded by voluminous Late Triassic to Cretaceous 
calc-alkaline I-type arc plutonic rocks. As the 
magmatism in the SSZ ceased in the Paleogene, arc 
volcanism flared up in the UDMA [7, 8]. The most 
likely interpretation of this northward migration of 
magmatism is flattening of the angle of subduction, 
combined with closure of the narrow back-arc basin in 
the Late Paleogene-Early Neogene [4, 9, 10]. 

Magmatism in the UDMA comprises of two distinct 
episodes: 1- the Paloegene volcanics which consists of 
basaltic andesites, latites, analcime rich tephrites, some 
nepheline phonoliths and volcano-clastic rocks and 2- 
Oligo-Miocene plutonic rocks consisting of 
granodiorites, porphyritic diorites and quartz diorite. 
The Late Miocene-Pliocene magmatic activity 
comprises of some dacitic-andesitic domes and lava 
flows [11, 12].  

The timing of final collision between the Afro-
Arabian plate and Eurasia, consist of Iranian micro 
plates, has been the subject of considerable debate, with 
estimates ranging from the Paleocene [6], through the 
Eocene [13, 14, 15], Oligocene [16], to the Miocene 
[13, 17].  

Seismic evidence suggests that crustal orogeny was 
accompanied by break off of the Neotethyan Oceanic 
slab under thrust the Arabian plate [18], possibly 
accompanied by delamination of part of the Central 
Iranian subcontinental lithospheric mantle [3]. 

 

Results 
Geological setting 

The Bagh-e-Khoshk granitoid stock, 140 km 
southwest of Kerman, is located in southeastern portion 
of the UDMA in the Dehaj–Sarduiyeh volcanic belt [19] 
(Fig.1). The stock is intruded into Eocene volcano-
sedimentary rocks and consists mainly of diorite, quartz 
diorite and granodiorite. Their contacts with host rocks 
are commonly irregular and covered by rock debris. The 
host volcanic rocks experienced low-grade 
metamorphism and therefore mineral assemblage of 
calcite, epidote and chlorite appeared in them. At least 
three faults have been identified around the Bagh-e-
Khoshk granitoid body. These lineament structures may 
control emplacement and exposure of granitoid and late 

hypothermal alteration. Mafic microgranular enclaves 
(MMEs) of various types and sizes are also occasionally 
observed in the Bagh-e-Khoshk stock. They are angular 
to rounded in shape, very fine-grained compared to the 
host rocks and have doleritic composition. Alteration in 
Bagh-e-Khoshk intrusion mainly occur in central and 
NE parts as stock work veins.  

 
Petrography 

Bagh-e-Khoshk granitoid rocks (diorite, quartz 
diorite and granodiorite) are generally medium to coarse 
grained granular to inequigranular or porphyritic 
textures. Mineralogically they are comprised of variable 
amounts of plagioclase (48-60 vol. %), quartz (<5-22 
vol. %), orthoclase (3-15 vol. %), hornblende (10-26 
vol. %) and biotite (3-7 vol. %). Apatite, titanite, zircon 
and opaque (5-7 vol. %) minerals are the main 
accessories. Sericite, chlorite and calcite are also locally 
present as secondary phases. Plagioclase, tabular in 
shape and 0.3 to 4 mm in size, is commonly zoned and 
slightly to moderately altered into sericite/clay minerals. 
Quartz, 0.3-1mm in size, commonly occurs as anhedral 
grains clustered between orthoclase and plagioclase. K-
feldpars, anhedral in shape and 0.2-.06mm in size, are 
slightly altered to clay minerals. Biotites, 0.2-1mm in 
size, are divided in to primary and secondary types. 
Hornblendes, 0.4- 1.2 mm in size and anhedral in shape, 
are moderately altered to biotite and chlorite.  
 
Analytical Methods and Procedures 

A total of sixty rock samples were collected from 
Bagh-e-Khoshk  granitoid body. After detailed 
petrographic studies, 31 representative samples with 
least alteration were selected for whole rock chemical 
analyses. Eighteen samples were analyzed for major 
elements by Wavelength-Dispersive X-ray Fluorescence 
Spectrometry at Sarcheshmeh mine laboratory, Iran. 
The rest of samples were analyzed for major and trace 
elements by Inductively Coupled Plasma-Atomic 
Emission Spectrometers (ICP-AES) and Inductively 
Coupled Plasma Mass Spectrometry (ICP-MS) at the 
Actlabs laboratory, Canada. Detection limits range 
within 0.01-0.1 wt% for major oxides, 0.1-10 ppm for 
trace elements, and 0.01-0.5 ppm for the rare earth 
elements. Sr and Nd isotopic analyses were carried out 
on selected seven samples, using geochemical criteria of 
whole-rock analyses, at Cape Town University in South 
Africa. 
 
Geochemistry 

Major Elements 
The Bagh-e-Khoshk intrusive rocks contain 50.20 to 

66.07 wt.% SiO2, and plot in diorite, quartz diorite and 
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granodiorite fields on TAS diagram [20] (Fig. 1a). The 
TiO2 contents range between 0.39 and 0.97 wt.% and 
are the same as values reported for subduction related 
rocks [21]. MgO contents vary from 1.52 to 4.64 wt.% 
with the highest value in diorite. The Mg# [100 
MgO/(MgO + FeOt)] is between 25 to 34 for all studied 
rock types. Potassium contents are relatively low (< 1 
wt.%) for diorites and 1% to 3 wt.% for quartz diorite 
and granodiorite. Na2O contents vary from 1.6% to 3.7 
wt.% and K2O/Na2O ratios are < 1 except for sample 
number (DI-1-14), which has K2O/Na2O =1.6 high 
LOI>2.13.  

The Bagh-e-Khoshk granitoid rocks are calc-alkaline 
in composition (Fig. 2b) and show metaluminous to 
slightly peraluminous nature on aluminum saturation 
index (ASI) with A/CNK values of 1-1.2 [22] (Fig. 2c). 
The peraluminous nature has been attributed to 
differentiation of olivine, pyroxene and hornblende [23] 
or heterogeneity of water content in the protolith [24]. 

Using SiO2 as a fractionation index, the Bagh-e-
Khoshk samples exhibit generally linear trends for most 
major and trace elements (Fig. 2.d-j). Al2O3, FeOt, TiO2, 
CaO, MgO, and P2O5 show negative correlations 
whereas K2O increases with increasing of SiO2. CaO 

Table 1. Whole rock major element analyses (wt.%) of Bagh-e-Khoshk  granitoid rocks.  D represents diorite; Qd, quartz diorite; Gd, granodiorite and 
ND- not detection 

Sample DI1-6 DI-6 DI-22 DI1-
22 

DI1-
16 DI-15 DI-20 DI1-

15 
DI1-
20 DI1--5 DI1-

14 DI1-21 DI-5 DI-8 DI1-8 DI-1 

Rock type D D D D D D D D D Qd Qd Qd Qd Qd Qd Qd 

Major oxides (Wt%)                

SiO2 50.20 50.31 50.31 51.61 52.52 52.96 53.22 53.39 53.57 54.54 54.61 54.76 54.87 55.71 55.97 56.16 

Al2O3 19.62 19.06 19.54 18.77 18.61 19.66 18.46 19.71 18.46 18.08 16.77 18.41 18.02 18.35 18.26 17.81 

FeO t 10.56 10.81 9.25 9.19 9.24 8.32 8.98 7.60 8.65 8.73 8.99 8.54 8.74 8.21 8.42 8.13 

MgO 4.70 4.41 4.72 4.61 3.22 3.54 4.21 3.48 3.89 3.97 4.64 3.85 3.79 3.54 3.38 3.59 

CaO 9.52 9.81 9.81 9.99 8.95 8.69 8.62 9.12 9.00 8.17 7.26 8.20 8.03 7.70 7.57 7.83 

Na2O 2.86 3.35 3.17 2.47 3.05 3.49 3.44 2.80 2.73 2.59 1.64 2.65 3.38 3.42 2.83 3.67 

K2O 0.49 0.35 0.62 0.69 0.86 0.99 1.03 1.14 1.22 1.37 2.65 1.42 1.05 1.22 1.38 1.24 

TiO2 0.64 0.66 0.80 0.73 0.97 0.57 0.76 0.54 0.71 0.64 0.65 0.68 0.66 0.61 0.58 0.62 

MnO ND 0.23 0.20 ND 0.22 0.20 0.19 ND 0.23 ND ND ND 0.20 0.18 ND 0.16 

P2O5 ND 0.27 0.31 ND ND 0.22 0.17 ND ND ND ND ND 0.16 0.20 ND 0.18 

LOI 0.99 1.47 1.69 1.34 1.57 2.05 1.33 1.72 1.17 1.29 2.13 1.12 1.79 1.52 1.24 1.31 

Total 99.58 100.70 100.40 99.40 99.21 100.70 100.40 99.50 99.63 99.38 99.34 99.63 100.70 100.70 99.63 100.70 

Trace elements (ppm)                

Sc  18.00 25.00   15.00 23.00      17.00 15.00  18.00 

Be  1.00 1.00   1.00 1.00      1.00 1.00  1.00 

V  244.00 255.00   170.00 211.00      189.00 168.00  167.00 

Cr  40.00 < 20   < 20 60.00      < 20 < 20  60.00 

Co  29.00 24.00   20.00 24.00      21.00 22.00  22.00 

Ni  < 20 20.00   < 20 < 20      < 20 < 20  20.00 

Cu  40.00 50.00   10.00 40.00      90.00 70.00  70.00 

Zn  160.00 120.00   90.00 70.00      130.00 90.00  80.00 

Ga  21.00 20.00   19.00 18.00      18.00 19.00  18.00 

Ge  1.50 1.40   1.30 1.20      1.20 1.20  1.30 

Rb  6.00 15.00   31.00 31.00      32.00 38.00  35.00 

Sr  676.00 753.00   678.00 527.00      537.00 519.00  548.00 

Y  11.10 16.90   13.70 19.90      16.40 16.00  18.10 

Zr  17.00 42.00   43.00 69.00      76.00 88.00  82.00 

Nb  0.50 1.70   1.70 3.10      2.90 3.00  3.40 

Cs  0.50 0.70   1.10 1.40      2.40 1.20  1.50 

Ba  203.00 270.00   271.00 295.00      270.00 342.00  378.00 

La  9.48 17.50   11.50 12.80      14.90 11.90  19.40 

(La)n  25.83 47.68   31.34 34.88      40.60 32.43  52.86 

(La/Sm)n  2.51 2.78   2.65 2.22      3.13 2.41  3.09 

Ce  18.40 35.00   22.80 27.50      27.70 25.50  37.90 

Pr  2.33 4.33   2.87 3.56      3.17 3.21  4.49 

Nd  10.20 18.30   12.20 14.90      13.00 13.20  17.70 

Sm  2.37 3.95   2.72 3.61      2.98 3.10  3.94 

(Sm)n  10.30 17.17   11.83 15.70      12.96 13.48  17.13 

Eu  1.09 1.43   1.07 1.17      1.02 0.99  1.11 

(Eu)n  14.83 19.46   14.56 15.92      13.88 13.41  15.10 

Eu*  1.41 1.15   1.22 1.00      1.05 0.98  0.91 
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and Al2O3 trends indicate fractionation of An riched 
plagioclase while decreasing of FeOt and TiO2 show Ti 
bearing magnetite fractionation. The MgO trend with 
low Mg# reveals differentiation of Fo rich olivin before 

rising and emplacement of magma in crust [25]. These 
chemical variations indicate the importance role of 
fractional crystallization in the Bagh-e-Khoshk 
magmatic evolution. 

Table 1. Ctd 
Sample DI1-6 DI-6 DI-22 DI1-

22 
DI1-
16 DI-15 DI-20 DI1-

15 
DI1-
20 DI1--5 DI1-

14 DI1-21 DI-5 DI-8 DI1-8 DI-1 

Rock type D D D D D D D D D Qd Qd Qd Qd Qd Qd Qd 

Trace elements (ppm)                

Eu*  1.41 1.15   1.22 1.00      1.05 0.98  0.91 

Gd  2.35 3.68   2.65 3.53      2.95 3.08  3.54 

(Gd)n  7.68 12.03   8.66 11.54      9.64 10.07  11.57 

(Gd/Yb)n  1.81 1.83   1.56 1.51      1.44 1.53  1.62 

Tb  0.35 0.55   0.43 0.57      0.47 0.47  0.53 

Dy  2.05 3.12   2.50 3.39      2.82 2.70  3.20 

Ho  0.38 0.61   0.47 0.68      0.57 0.56  0.63 

Er  1.06 1.77   1.37 2.01      1.61 1.61  1.85 

Tm  0.16 0.26   0.20 0.30      0.24 0.24  0.27 

(Yb)n  4.23 6.57   5.56 7.66      6.69 6.57  7.14 

Yb  1.05 1.63   1.38 1.90      1.66 1.63  1.77 

Lu  0.17 0.24   0.22 0.29      0.27 0.26  0.28 

Hf  0.50 1.00   1.40 2.00      2.10 2.30  2.30 

Ta  0.04 0.12   0.13 0.22      0.20 0.21  0.26 

Pb  17.00 9.00   12.00 8.00      28.00 15.00  16.00 

Th  0.46 1.69   2.39 2.78      2.53 3.91  5.35 

U  0.14 0.55   0.79 0.74      0.74 1.10  1.52 

 
Table 1. Ctd 

Sample DI-12 DI1-12 DI1-
17 DI1-2 DI-1-

9 DI-3 DI-25 DI-4 DI1-1 DI1-25 DI1-3 DI1-4 DI-10 DI1-
10 

DI1-
11 

DI1-
13 DI-13 

Rock 
type Qd Qd Qd Qd Qd Qd Qd Qd Qd Qd Gd Gd Gd Gd Gd Gd Gd 

Major oxides 
(Wt%)                 

SiO2 56.77 56.26 56.68 57.07 57.18 57.21 57.73 57.92 57.96 57.96 59.08 60.04 61.40 61.55 62.50 65.12 66.07 

Al2O3 18.05 18.25 17.70 17.47 18.22 17.89 17.84 17.41 19.07 17.61 17.28 17.22 16.29 16.97 16.49 15.53 15.25 

FeO t 7.16 7.01 9.55 7.21 7.55 7.76 7.19 7.28 7.37 6.86 7.34 6.97 6.01 5.88 6.28 4.31 4.53 

MgO 3.16 3.36 3.63 3.24 3.22 3.15 3.02 2.82 2.04 2.78 2.89 2.42 2.44 2.49 2.31 1.68 1.65 

CaO 7.14 7.16 6.55 7.35 7.71 7.01 6.72 6.49 7.36 6.54 6.68 6.49 5.75 5.36 4.77 3.91 3.71 

Na2O 3.70 3.05 2.25 2.62 2.09 3.32 3.35 3.46 2.87 2.94 2.90 2.90 3.46 2.83 2.44 3.03 3.56 

K2O 1.57 1.74 0.58 1.78 1.66 1.15 1.89 1.67 1.62 2.05 1.25 1.74 2.36 2.73 2.46 3.01 2.86 

TiO2 0.57 0.57 0.80 0.59 0.64 0.60 0.59 0.59 0.59 0.50 0.53 0.50 0.45 0.45 0.47 0.35 0.39 

MnO 0.16 ND 0.22 0.19 0.17 0.13 0.15 0.11 0.17 0.19 ND ND 0.14 0.17 ND ND 0.09 

P2O5 0.18 ND ND ND ND 0.19 0.17 0.17 ND ND ND ND 0.14 ND ND ND 0.10 

LOI 2.12 1.89 1.88 1.08 0.94 2.25 2.05 1.94 0.34 1.85 1.48 1.37 1.65 1.28 1.79 1.49 1.75 

Total 100.60 99.29 99.84 98.60 99.38 100.70 100.70 99.85 99.39 99.28 99.43 99.65 100.10 99.71 99.51 98.43 99.97 

Trace elements (ppm)                

Sc 14.00     15.00 17.00 14.00     12.00    8.00 

Be 1.00     1.00 1.00 1.00     1.00    2.00 

V 145.00     143.00 158.00 134.00     110.00    74.00 

Cr < 20     < 20 70.00 80.00     100.00    110.00 

Co 17.00     19.00 17.00 16.00     10.00    10.00 

Ni < 20     < 20 < 20 < 20     < 20    < 20 

Cu 10.00     140.00 70.00 120.00     50.00    60.00 

Zn 80.00     170.00 80.00 60.00     180.00    90.00 

Ga 17.00     18.00 18.00 17.00     17.00    15.00 

Ge 1.20     1.60 1.20 1.60     1.30    1.20 

Rb 40.00     32.00 58.00 59.00     74.00    81.00 

Sr 589.00     509.00 504.00 448.00     435.00    355.00 

Y 15.40     17.60 17.10 17.80     16.00    17.20 
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Trace element 
Trace element composition of thirteen samples of 

Bagh-e-Khoshk granitoid rocks are listed in Table 2. Rb 
(5 to 81 ppm) and Ba (200 t0 700ppm) contents show 
positive correlation with increasing of SiO2. Sr 
concentration changes from 765 ppm in diorite to 435 
ppm in granodiorite and show negative correlation with 
increasing of silica content. Rb, Sr and Ba are the most 
useful trace elements for evaluation of fractional 
crystallization in granitoids [26]. Sr is incompatible for 
most common minerals except plagioclase, similarly Ba 
and Rb are partitioned in K-feldspar [27]. Consequently, 
Ba/Sr and Rb/Sr ratios increase and decrease with 
crystallization of plagioclase and K-feldspar 
respectively. So, the increase of ratios from diorite to 
granodiorite in the Bagh-e-Khoshk granitoids is an 
indication of plagioclase fractionation. Co and V show a 
negative correlation with increasing silica content and 

behave as compatible elements. The decrease in Co, V 
and TiO2 together with increasing SiO2 provides 
evidence for the fractionation of Fe-Ti oxides. 

In the primordial mantle-normalized trace element 
diagrams, the Bagh-e-Khoshk granitoid rocks generally 
show an enrichment in large ionic lithophile elements 
(LILEs, e.g. Rb, Ba, and K); but they are depleted 
(except in some quartz diorites and granodiorites) in 
high field strength elements (HFSEs, e.g. Nb, Ta, Ti, Zr, 
and Hf) (Fig 3.b,d). The non-existence negative Zr and 
Hf anomalies may be related to the aggregation of Zr-
bearing minerals such as zircon. 

Chondrite-normalized rare earth element (REE) 
patterns for the Bagh-e-Khoshk granitoid rocks are 
shown in figures 3a and c. The light rare earth elements 
(LREE) show 40-80 times the chondrite values and the 
patterns exhibit fractionation between LREE and HREE 
([La/Yb]n = 3.84-7.41) and very slightly HREE 

Table 1. Ctd 
Sample DI-12 DI1-12 DI1-

17 DI1-2 DI-1-
9 DI-3 DI-25 DI-4 DI1-1 DI1-25 DI1-3 DI1-4 DI-10 DI1-

10 
DI1-
11 

DI1-
13 DI-13 

Rock 
type Qd Qd Qd Qd Qd Qd Qd Qd Qd Qd Gd Gd Gd Gd Gd Gd Gd 

Trace elements (ppm)                

Zr 63.00     101.00 95.00 113.00     118.00    136.00 

Nb 3.30     3.60 3.50 3.60     3.90    4.50 

Cs 1.10     1.20 1.20 2.90     2.60    1.10 

Ba 462.00     539.00 436.00 451.00     540.00    717.00 

La 12.90     19.10 14.50 17.00     13.80    10.40 

(La)n 35.15     52.04 39.51 46.32     37.60    28.34 

(La/Sm)n 2.37     3.41 2.80 3.10     2.88    2.14 

Ce 30.10     37.10 29.60 34.60     28.00    24.30 

Pr 3.85     4.31 3.61 4.16     3.40    3.21 

Nd 16.30     17.10 14.80 16.10     13.70    13.40 

Sm 3.41     3.51 3.25 3.44     3.00    3.04 
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of Bagh-e-Khoshk granitoids in Miocene emphasizes 
collision between the Arabian and Central Iranian plates 
along the Zagros suture zone happened during or after 
Miocene. 
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