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Abstract

Objectives: To demonstrate the effects of the injection of intravitreal bevacizumab (IVB) on the clinical course of established bron-
chopulmonary dysplasia (BPD).
Methods: This is a multicenter retrospective case-control study performed without any randomization or masking procedure. A
total of 70 patients with BPD, including 35 cases (the IVB group) and 35 controls (the control group) were studied. Patients in the
IVB group received intravitreal anti-VEGF (bevacizumab) treatment for type 1 prethreshold retinopathy of prematurity (ROP). The
control group consisted of infants with BPD whose gestational age, birthweight, and gender were matched with those of the IVB
group. None of the infants in the control group needed to be treated for ROP using either anti-VEGF or laser photocoagulation.
Results: There was no statistically significant difference (P = 0.11) between the groups in terms of the total duration of oxygen prior
to the IVB injection (65.9± 23.5 and 79.1± 33.1 days in the IVB group and control group, respectively). However, after the injection of
IVB, the total duration of oxygen was significantly lower in the IVB group (mean 7 (1 - 70) days vs. 16 (1 - 98) days, P = 0.01). In 14 cases
with mild BPD and their matched controls, the median time (25% - 75%) for the discontinuation of oxygen therapy was 3 (2 - 7) days
and 10 (5 - 15) days, respectively (P = 0.36). In 21 cases with moderate and severe BPD and their matched controls, the median time (25
- 75%) for the discontinuation of oxygen therapy was 14 (7 - 21) days and 22 (16 - 43) days, respectively (P = 0.024).
Conclusions: Intravitreal bevacizumab injection treatment for ROP cases with BPD was found to be associated with a shorter du-
ration of oxygen use. The results of the study not only demonstrate a pathogenic correlation between ROP and BPD through an
abnormal vasculogenesis, but also raise a question regarding whether or not the systemic side effects of IVB are actually adverse.
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1. Background

The most common pulmonary disease following
preterm birth and neonatal intensive care is chronic lung
disease of prematurity, also known as bronchopulmonary
dysplasia (BPD) (1), which has consequences for the later
lung function of affected patients (2).

BPD was first reported to be lung damage resulting
from barotrauma and volutrauma following prolonged
mechanical ventilation (MV). The histological features of
MV-related BPD include alternating areas of atelectasis and
hyperinflation, severe airway epithelial lesions (hyperpla-
sia and squamous metaplasia), airway smooth muscle hy-
perplasia, and extensive fibroproliferation (3). However,
even in the absence of MV, premature birth interrupts nor-
mal intrauterine lung development, and it impairs pul-
monary function during the first years of life and beyond
independently of further neonatal disease (4-6). The so-
called “new BPD” is characterized by an arrest in lung matu-
ration, dimensional growth, and alveolar septation, which

leads to simplified alveolar structures, dysmorphic capil-
lary configuration, and variable interstitial cellularity (7).

On the other hand, BPD and retinopathy of prema-
turity (ROP) are two common morbidities that have al-
ways been said to exhibit pathogenic interaction or corre-
lation. A National Institute of Child Health and Develop-
ment (NICHD) Neonatal Research Network trial (8), as well
as a study by Vento et al. (9), previously demonstrated a
possible pathogenic interaction between ROP and BPD, at
least by means of oxygen exposure.

In addition, in recent years a new treatment modal-
ity involving the intravitreal injection of anti-VEGF (vas-
cular endothelial growth factor) agents (intravitreal beva-
cizumab (IVB)) has been used in the treatment of ROP with
high success rates of up to 100% in even the most aggres-
sive forms of the disease (10-14). However, anti-VEGF agents
can gain access to the systemic circulation following an
intravitreal injection (15-19), and the systemic adverse ef-
fects of intravitreal anti-VEGF agents have always been a
concern. VEGF is a mediator associated with vasculogene-
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sis and angiogenesis, and it induces vascular permeability
in addition to endothelial cell proliferation and migration
(20). Intravitreal anti-VEGF agents have been reported to
be associated with detectable levels in the systemic circu-
lation that may significantly suppress systemic VEGF levels
(21). There is also a scientific rationale for the potential oc-
currence of effects on the clinical course of BPD.

Nevertheless, we have previously reported that in
terms of possible systemic side effects, there was an im-
provement in the clinical course of BPD following the in-
jection of IVB (i.e., a decrease in oxygen dependency, more
rapid advancement to oral nutrition, and weight gain) (10).

2. Objectives

We designed this study to demonstrate the effects of
the injection of intravitreal bevacizumab on the clinical
course of established BPD.

3. Methods

This multicenter retrospective case-control study was
performed without any randomization or masking proce-
dure. The study was approved by the ethics committee of
Cerrahpasa School of Medicine. Two centers contributed
to the study, namely Cerrahpasa School of Medicine and
the Zeynep Kamil Women and Children’s Training and Re-
search Hospital, Istanbul. An informed consent form was
signed by the parents of all patients in the study group
prior to the IVB injection.

A total of 70 patients with a diagnosis of BPD, includ-
ing 35 cases (the IVB group) and 35 controls (the control
group), were recruited. The IVB group consisted of pa-
tients with BPD who had received intravitreal anti-VEGF
(bevacizumab) treatment (IVB) for type 1 prethreshold ROP.
To create the control group, infants with similar gesta-
tional age, birthweight, and sex who were born immedi-
ately before or after the patients in the study group and
who were diagnosed with BPD were identified from the in-
stitutional database. None of the infants in the control
group needed either anti-VEGF or laser photocoagulation
(LPC) treatment for ROP. All demographic and clinical data
were retrieved from the patients’ files.

Bronchopulmonary dysplasia was defined as the need
for oxygen treatment at the 28th postnatal day. It was clas-
sified as mild BPD if no oxygen was needed at the 36th post-
conceptional week; moderate if the oxygen need was less
than 30% at the 36th postconceptional week; and severe if
the oxygen need was more than 30% at the 36th postcon-
ceptional week (1).

The oxygen need in terms of total duration (days)
and duration (days) after IVB application was compared

between the groups. The oxygen need in the control
group was calculated from the day of IVB treatment in the
matched case. In order to evaluate any similarities and/or
changes in the systemic status of the groups, any associ-
ated co-morbidities and clinical features such as patent
ductus arteriosus (PDA), necrotizing enterocolitis (NEC),
intraventricular hemorrhage, postnatal steroid usage, and
duration of hospitalization were also compared.

Intravitreal bevacizumab injection procedure: The in-
travitreal bevacizumab injection procedures were per-
formed according to Dr. Huseyin Yetik’s intravitreal injec-
tion technique under indirect ophthalmoscopic visualiza-
tion and illumination. After the eyes were prepared with 5%
povidone-iodine in the standard fashion, and while visual-
izing the tip of the needle through the dilated pupil under
binocular indirect ophthalmoscopic visualization and illu-
mination, 0.625 mg (0.025 mL) of bevacizumab (Altuzan
100 mg/4 ml flacon, Roche, Turkey) was injected using a 30-
G needle into the vitreous cavity approximately 1 mm be-
hind the limbus via the pars plicata under topical anesthe-
sia. An experienced nurse helped to secure the infant dur-
ing the procedure. All injections were performed by the
same surgeon (Dr. H.Y.). After the injections, retinal artery
patency was checked. Topical antibiotic drugs were then
administered for five days (see supplemental video S2 of
(10)).

For the statistical analyses, the NCSS (number
Cruncher statistical system) 2007 and PASS (power analy-
sis and sample size) 2008 statistical software (Utah, USA)
programs were used. The Mann-Whitney U test was used
to assess the continuous nonparametric variables, while
the t-test was used for the parametric variables. Statistical
significance was assessed as P < 0.05.

4. Results

In the IVB group, 14 mild, 15 moderate, and six severe
cases of BPD were observed. In order to achieve maximal
similarity between the groups, the same number of cases
for each severity subgroup was retrospectively selected for
enrollment in the control group. Anti-VEGF therapy was
administered at a median of 34 ± 2.1 postconceptional
weeks (min-max=31 - 39 weeks).

There was no statistically significant difference (P =
0.11) between the two groups in terms of total oxygen dura-
tion prior to IVB injection (65.9 ± 23.5 and 79.1 ± 33.1 days
in the IVB group and control group, respectively). How-
ever, following IVB application the total oxygen duration
was significantly lower in the IVB group (mean 7 (1 - 70) days
vs. 16 (1 - 98) days, P = 0.01) (Table 1). In 14 cases of mild BPD
and their matched controls, the median time (25 - 75%) for
the discontinuation of oxygen therapy was 3 (2 - 7) days and
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10 (5 - 15) days, respectively (P = 0.36). In 21 cases with mod-
erate and severe BPD and their matched controls, the me-
dian time (25 - 75%) for the discontinuation of oxygen ther-
apy was 14 (7 - 21) days and 22 (16 - 43) days, respectively (P =
0.024).

In terms of the comparison between associated co-
morbidities such as patent ductus arteriosus, necrotiz-
ing enterocolitis, intraventricular hemorrhage, postnatal
steroid usage, and duration of hospitalization, as well as
the duration of oxygen use and mechanical ventilation,
there were no statistically significant differences between
the groups (Table 1). As a surrogate for postnatal growth,
there was no difference between the two groups’ discharge
weights (2451 g vs. 2601 g). Steroid use was similar in both
groups (Table 1).

5. Discussion

Since the comparison of the associated co-morbidities
and clinical features showed no significant differences be-
tween the groups prior to the injection of IVB, this study
was primarily focused on the clinical course of BPD.

Bronchopulmonary dysplasia and ROP are develop-
mental diseases affecting preterm infants, both of which
represent a disruption or arrest to the maturation pro-
cess of the associated tissues or organs. There have been
several studies that emphasize the importance of VEGF in
the alveolar development of these tiny infants. Jakkula
et al. showed that the inhibition of angiogenesis simul-
taneously decreases the number of alveoli in developing
rat lungs (22). In another study, the VEGF levels in the tra-
cheal aspirate samples of BPD patients were found to be de-
creased (23). This might indicate a possible role of low lev-
els of VEGF in the pathogenesis of BPD. Brown et al. showed
that VEGF acts directly on the pulmonary epithelium and
stimulates alveolarization (24). Furthermore, Maniscalco
et al. studied preterm rats and found that VEGF signal dis-
ruption due to mechanical ventilation may have an impact
on the development of BPD (25).

In contrast to these well-known studies, our study
demonstrated a better clinical course of established BPD
after intravitreal anti-VEGF bevacizumab injection. Despite
the absence of any statistically significant difference be-
tween the groups in terms of the total duration of oxygen
usage prior to IVB injection, the total oxygen duration was
significantly less in the IVB group (mean 7 (1 - 70) days vs. 16
(1 - 98) days, P = 0.01) after IVB injection in the present study
(Table 1). Furthermore, this statistical significance became
more prominent if the severity of the BPD worsened, since
in mild BPD cases and their matched controls, the median
time (25% - 75%) for the discontinuation of oxygen therapy

was 3 (2 - 7) days and 10 (5 - 15) days, respectively, and the dif-
ference was insignificant (P = 0.36). However, for moderate
and severe BPD cases and their matched controls, the me-
dian time (25 - 75%) for the discontinuation of oxygen ther-
apy was 14 (7 - 21) days and 22 (16 - 43) days, respectively, and
the difference was more significant (P = 0.024). Therefore,
a very important question remains to be answered: Aside
from the decrease in VEGF levels, how can this better clini-
cal course of BPD be explained?

VEGF plays a central role in the life and death of pul-
monary vascular endothelial cells, and the main sites of
VEGF production are type II pneumocytes and activated
alveolar macrophages (26). Nevertheless, strict control
of VEGF expression is necessary during alveolar develop-
ment. Le Cras et al. demonstrated in VEGF transgenic mice
that increased VEGF levels cause a six-fold increase in the
bronchoalveolar lavage fluid (BALF) protein levels and pul-
monary hemorrhage in neonates. Furthermore, half the
VEGF transgenic mice died prior to reaching two weeks
of age, most likely due to pulmonary hemorrhage. The
lungs of VEGF transgenic mice with respiratory distress ex-
hibited gross blood and VEGF overexpression, which was
shown to result in increased mortality, pulmonary hemor-
rhage, hemosiderosis, alveolar remodeling, and inflamma-
tion (27). Therefore, similar to the pathogenesis of ROP, the
overexpression of VEGF could have played a key pathogenic
role in the normal development of the lungs in cases of
BPD in the same way it does in the normal development of
retina in cases of ROP.

On the other hand, postnatal intratracheal adenovirus-
mediated VEGF gene therapy improved survival, promoted
lung capillary formation, and preserved alveolar devel-
opment in neonatal rats exposed to hyperoxia (28). As
stated in the study, the mechanisms and signal transduc-
tion pathways that regulate normal alveolar development
remain poorly understood, and even less is known about
how these pathways are altered in disease. The interac-
tions between the airways and blood vessels are critical
for normal lung development, suggesting that a coordi-
nated and timely release of vascular-specific growth fac-
tors from respiratory epithelial cells promotes alveolar de-
velopment (28).

In particular, the coordinated and timely release of
vascular-specific growth factors noticed in this study
should be very important for almost all morbidities associ-
ated with prematurity. According to the biphasic theory of
ROP, in order to induce normal retinal vascularization, the
expression of VEGF increases during the first phase; how-
ever, it continues to feed and increase pathological vascu-
larization during the second phase. In other words, in the
first phase, VEGF seems useful for inducing normal vascu-
larization, while in the second phase, when normal vas-
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Table 1. Clinical Features and Outcomes of the Patients

IVB Group (n = 35) Control Group (n = 35) P

Gestational week 26.6 ± 1.6 26.6 ± 1.5 0.90

Male/female 18/17 16/19 0.63

Birthweight (g) 902.1 ± 262 879 ± 242 0.82

Patent ductus arteriosus 14/35 18/35 0.33

Necrotizing enterocolitis 6/35 2/35 0.13

Intraventricular hemorrhage 14/35 8/35 0.30

Invasive ventilation (days) 14 (1 - 70) 11 (1 - 54) 0.13

Non-invasive ventilation (days) 21 (1 - 70) 20 (3 - 67) 0.40

Postnatal steroids 14/35 (39.1%) 9/35 (60.9%) 0.20

Duration of hospitalization (days) 82.7 ± 22.9 95.8 ± 31.5 0.10

Bodyweight at discharge (g) 2451 ± 586 2606 ± 570 0.26

Duration of oxygen use (days) 65.9 ± 23,5 79.1 ± 33.1 0.11

Duration of oxygen use after IVB (days) 7 (1 - 70) 16 (1 - 98) 0.01

cularization cannot be achieved, the presence of VEGF be-
comes harmful. Therefore, the results following the in-
crease or blockage of VEGF should be totally dependent on
the phase of the disease. Thus, even though VEGF-induced
angiogenesis is also partly mediated by nitric oxide and the
treatment of hyperoxia-exposed rats with an NO donor has
increased both the VEGF mRNA and protein levels and re-
stored the expression level of the key controllers of alve-
olarization (29), inhaled NO in human preterm neonates
has not improved survival without BPD (30). In addition,
in the study by Le Cras et al. it was shown that although
chronic increases in VEGF did not alter postnatal lung mor-
phogenesis, vascular leakage and pulmonary hemorrhage
were observed in VEGF transgenic mice, resulting in a 50%
increase in neonatal mortality (27). In addition to alveolar
hemorrhage, evidence of inflammation, air space remodel-
ing, and pulmonary hemosiderosis was observed, and the
VEGF levels caused a six-fold increase in the protein levels
and pulmonary hemorrhage in neonates. Previous studies
have shown decreased VEGF levels in the lungs of infants
who died of BPD. On the basis of these findings, postna-
tal intratracheal adenovirus-mediated VEGF gene therapy
serves to improve survival and preserve alveolar develop-
ment (28). Elevated VEGF levels have also been reported in
sepsis, and this has been thought to lead to the capillary
leak syndrome seen in sepsis (31). The increased expression
of VEGF has been associated with several respiratory dis-
eases, including bronchitis, airflow limitation, and asthma
(32, 33). Thus, in the present study, the statistical signifi-
cance of the decrease in oxygen dependency increased as
the severity of the BPD worsened.

In our study, in both mild BPD cases and moderate
to severe BPD cases, the duration of oxygen dependency
was significantly lower in patients who received anti-VEGF
therapy. Although the amount of oxygen administered de-
creased in some patients with moderate to severe BPD, we
calculated the duration of time for the absolute discontin-
uation of oxygen therapy to be a better marker of oxygen
dependency.

VEGF is mitogenic for endothelial cells, as well as in-
ducing capillary permeability and regulating endothelial
cell migration and tube formation (34). A histologic study
has shown that intravitreal anti-VEGF induces apoptosis
and lessens fenestration in vascular endothelial cells, in-
dicating that the treatment affects vascular endothelial
cells (35). In another study, the intravitreal injection of
anti-VEGF was shown to inhibit leukocyte trafficking in the
retina, which suggests that anti-VEGF therapy could serve
as a treatment for retinal inflammation (36).

Intravitreal anti-VEGF therapy has been increasingly
used in severe ROP cases; hence, whether or not the sys-
temic leakage of anti-VEGF can cause any short- or long-
term adverse effects on the tissues or organs has always
been an issue (10-14). The effects of this therapy on other
tissues, including the lungs, were not investigated thor-
oughly in the present study, although we have previ-
ously reported a better systemic clinical course of BPD in
preterm babies after the injection of IVB (10). VEGF may
have protective and regenerative effects in instances of
lung injury, but it also contributes to non-cardiogenic pul-
monary edema by increasing vascular permeability. There-
fore, the down-regulation of VEGF observed in instances
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of acute lung injury is thought to represent a protective
mechanism aimed at limiting endothelial permeability
(37). This may occur at the expense of a decrease in the
number of capillaries. Similar mechanisms may be effec-
tive in the development of other diseases associated with
aberrant vasculogenesis or epithelial morphogenesis, for
example, necrotizing enterocolitis (10).

In summary, the results of our study suggest that anti-
VEGF treatment for premature infants may ameliorate the
oxygen dependence of these infants. The results of this
study are very important in terms of both decreasing ap-
prehension regarding the systemic adverse effects of anti-
VEGF injections and having the potential to promote the
systemic anti-VEGF treatment of almost all morbidities of
prematurity (i.e., ROP, BPD, NEC, and intracranial complica-
tions) simultaneously in the near future. However, further
studies are needed to demonstrate and reproduce the re-
sults of this study.
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