

ماهنامه علمی پژوهشی

. . مکانیک مدرس

طراحي بهينة يوستة استوانهاي هدفمند با لاية ييزوالكتريك تحت بار متحرك

فريد وكيلى تهامى^{1*}، رضا حسنiڑاد قديم²، آرش محمدعليزاده فرد³، مرتضى راميننيا³

1- دانشیار، مهندسی مکانیک، دانشکده فنی مهندسی مکانیک، دانشگاه تبریز، تبریز 2- استادیار، مهندسی مکانیک، دانشکده فنی مهندسی مکانیک، دانشگاه تبریز، تبریز 3- دانشجوی دکتری، مهندسی مکانیک، دانشکده فنی مهندسی مکانیک، دانشگاه تبریز، تبریز

* تبريز، صندوق پستي f_vakili@tabrizu.ac.ir ،5166614766

Optimum design of functionally graded cylindrical shell with piezoelectric layer under moving load

Farid Vakili-Tahami^{*}, Reza Hassannejad Qadim, Arash Mohammad Alizadeh Fard, Morteza Raminnia

Department of Mechanical Engineering, University of Tabriz, Tabriz, Iran. * P.O.B. 5166614766 Tabriz, Iran, f_vakili@tabrizu.ac.ir

ARTICLE INFORMATION

Original Research Paper Received 09 February 2015 Accepted 15 May 2015 Available Online 04 July 2015

ੈ<ਾਰਵ

Keywords: **Cylindrical Shell Functionally Graded Materials** Moving Load Optimization **Control Point Method**

ABSTRACT

In this paper a method has been developed to obtain an optimum material distribution for a cylindrical shell with Functionally Graded (FG) material and additional piezoelectric outer layer. The objective of the optimization is to satisfy full stress loading criterion. For this purpose, firstly, a solution method has been outlined in which the governing equations are developed by combining First order Shear Deformation Theory (FSDT) and Maxwell equations, with the use of Hamilton principle. Dynamic analysis is a major concern in this solution method because of the significant dynamic displacements, strains and stresses due to the effect of moving load. Hence, the time dependent transient responses of the structure and stress distribution have been obtained. In the next stage, a methodology has been introduced to obtain the optimum material distribution. In this method, instead of using pre-assumed material distribution functions which impose limitations to the manufacturing of the shell and also to the optimization solution, control points with Hermite functions are used. The thickness of the shell and volume fraction of the FG material at these points have been regarded as optimization variables. The optimization method is based on the genetic algorithm and to reduce the solution time, calculations are carried out using parallel processing in four cores. The results show that the developed method is capable of analyzing the FG structures and provides optimum solution. The major advantage of this method is its flexibility in providing volume fraction distribution of the material.

نیاز به تأمین توأمان خصوصیات متفاوت مثل مقاومت در برابر بار و درجه جرارت، منحر به معرفی و تولید مواد هدفمند با قابلیتهای متفاوت و تغییرات با پیشرفت سریع تکنولوژی، نیاز به استفاده از مواد جدید بهعنوان اولویت خواص پیوسته در جهات مختلف شده است. مواد هدفمند، کامپوزیتهای مهندسی در سیستمهای پیشرفته مطرح شده است. در برخی از این موارد،

Please cite this article using:

برای ارجاع به این مقاله از عبارت ذیل استفاده نمایید:

1- مقدمه

F. Vakili-Tahami, R. Hassannejad Qadim, A. Mohammad Alizadeh Fard, M. Raminnia, Optimum design of functionally graded cylindrical shell with piezoelectric layer under moving load, Modares Mechanical Engineering, Vol. 15, No. 8, pp. 291-300, 2015 (In Persian) www.SID.ir

تأثیر لایههای پیزوالکتریک و تغییر گرادیان مواد هدفمند را بر روی رفتار مکانیکی پوسته مطالعه نمودهاند. در سال 2011 میلادی اکبری الشتری و خرسند [12] به حل سهبعدی حرارتی-مکانیکی یک پوستهٔ استوانهای هدفمند با لایهٔ پیزوالکتریک و با استفاده از روش کوادراتور دیفرانسیلی پرداختهاند. آنها با فرض یک توزیع توانی برای گرادیان مواد در راستای ضخامت، نتایج عددی را با شرایط مرزی متفاوت بهدست آورده و تأثیر ضخامت لایههای پیزوالکتریک و تغییر توزیع گرادیان مواد و نسبت ضخامت به شعاع پوسته را روی نتایج نشان دادهاند. در سال 2014 میلادی جعفری و همكارانش [13] ارتعاشات غيرخطي يوستهٔ استوانهاي هدفمند با لايه پیزوالکتریک را مورد بررسی قرار دادهاند. آنها بر اساس تئوری غیرخطی دانل و به روش شبهتحلیلی پاسخ دینامیکی سیستم را بهدست آوردهاند. آنها در بررسی خود تأثیر نیروهای القایی و ولتاژ اعمالی بر روی رفتار ارتعاشی سیلندر استوانهای هدفمند را بررسی نمودهاند. با وجود این موارد، مطالعات کمی بر روی طراحی بهینهٔ توزیع مواد هدفمند در سازههای هوشمند انجام گرفته است. از آنجا که عملکرد مواد هدفمند تابعی از نحوهٔ ترکیب فازهای تشکیل دهنده میباشد، از این٫و استفادهٔ بهینه از مواد ضمن تامین اهداف طراحی، در جهت کاهش هزینه تمام شده اهمیت ویژهای دارد. بر این اساس، بهینهسازی توزیع مواد یک گام اساسی در طراحی سازههای با مواد هدفمند است که نیاز به شبیهسازی دقیق رفتار آنها دارد. از میان تحقیقات انجام شده در زمینهٔ بهینهسازی این سازهها، بیشتر بررسیها سعی در کاهش تنشهای حرارتی داشته [14-18] و برخی دیگر در زمینهٔ کمینهسازی تنشهای مکانیکی انجام گرفتهاند [19-23]. در سال 2002 میلادی، چو و ها [24] به بهینهسازی کسر حجمی مواد هدفمند در پوشش حرارتی Ni-Al2O3 بهمنظور .
و کمینهسازی تنشهای حرارتی حالت پایا با استفاده از تکنیک بهینهسازی تابع جریمه داخلی و روش انتخاب طلایی پرداختهاند. در سال 2005 میلادی كيان و باترا [25] فركانسهاى طبيعى بهينه در يک صفحهٔ هدفمند با گرادیان دوسویه را تعیین نمودهاند. ایشان با استفاده از الگوریتم ژنتیک به طراحي بهينه توزيع گراديان مواد با هدف كمينه نمودن فركانس طبيعي اول و یا دوم سازه پرداختهاند. در سال 2006 میلادی، گوپی و ول [26] کاربرد روش المان آزاد گالركين را در طراحي بهينهٔ رفتار ترموالاستيسيک ماده هدفمند بررسی کردهاند. آنها پس از تعیین کسر حجمی سرامیک در تعدادی از نقاط، توزیع مواد را با استفاده از میانیابی تعیین و سپس به کمک الگوریتم ژنتیک به کمینهسازی وزن سازه و تنش حرارتی بیشینه پرداختهاند. در سال 2009 میلادی نعمتالله [27] به تعیین توزیع گرادیان بهینه با هدف کمینهسازی تنشهای حرارتی پرداخته است. لازم به ذکر است در تحقیق وی، کسر حجمی مواد با استفاده از قانون توانی تعیین شده است. در سال 2014 میلادی، اشجاری و خوشروان [28] به بهینهسازی وزن ورق هدفمند با وجود قیدهای تنش و جابهجایی پرداختند. ایشان برای بهینهسازی از نقاط

غیرهمگن پیشرفتهای هستند که ساختارهای آنها بهصورت میکروسکوپی تغییر می کند تا خصوصیات مطلوب ماده را ارائه کنند. برای مثال درصورت نیاز به خصوصیات حرارتی یا مقاومت به سایش، میتوان از لایههای با درصد حجمی بالای سرامیک در داخل لوله استفاده کرد. از طرف دیگر، در لایههای خارجي با افزايش درصد حجمي فلز، مي توان استحكام لازم را جهت تحمل بارهای اعمال شده فراهم نمود. علاوه بر آن، تقاضا برای افزایش کارایی و حذف یا کاهش اثرات ناخواسته در سازههای پیشرفته موجب ایجاد تمایل به استفاده از مواد هوشمند متشکل از ترکیب لایههای هدفمند و لایههای پیزوالکتریک به عنوان سنسور یا عملگر شده است. ویژگیهای مطلوب مواد هدفمند مانند استحکام و سختی بالا، مقاومت در برابر حرارت، انعطافپذیری و مقاومت به سایش مطلوب، خواص الکتریکی و مغناطیسی باعث شده است که بتوان با استفاده از این مواد، قطعاتی کوچکتر، سبکتر، هوشمندتر و چند منظوره تولید کرد. بهطور کلی می توان گفت که قابلیت تغییر درصد حجمی، امکان ایجاد خواص فیزیکی مطلوب را فراهم کرده است. نخستین بار این مواد در ژاپن و برای تولید عایقهای حرارتی در تجهیزات فضایی [1] مطرح شدند. امروزه کاربرد این مواد رو به گسترش است؛ سلولهای با لایهی نازک فتوولتائیک در صنایع اپتیک، لنزها، مولدهای لیزر [2]، سپرها و عایقهای حرارتی و مواردی از این دست جزء زمینههای بالقوهٔ کاربرد مواد هدفمند هستند. همچنین این مواد در ساخت صفحات و پوستههای مخازن رآکتورها و توربینها [3] نیز کاربرد بالایی دارند. این مواد و سازههای هوشمند در صنایع هوا-فضا، سامانههای کنترل تنشهای حرارتی و مکانیکی، کنترل ارتعاشات فعال و پایش سلامت سازه بهعلت افزایش عملکرد و طول عمر آنها، از اولویت خاصی برخوردارند. با توجه به کاربرد سازههای دارای این مواد در برابر بارهای متحرک که بهعلت تغییر نیرو در زمان و مکان، خیز و تنشهای دینامیکی با مقدار زیاد به ویژه در سرعتهای بالا ایجاد میکنند، بررسی رفتار سازههای هوشمند در معرض این گونه بارها اهمیت دوچندانی دارد [4-8]. در این میان، تمایل به دستیابی به طرحهای بهینه موجب تشویق محققان به استفاده از روشهای بهینهسازی در طراحی این سازهها شده است. در سالهای اخیر مطالعات زیادی بر روی رفتار ساختارهای هوشمند متشکل از مواد هدفمند با لایه پیزوالکتریک تحت بارهای حرارتی و مکانیکی انجام پذیرفته است. در سال 2004 میلادی لیو و همکارانش [9] کاربرد سنسور و عملگر پیزوالکتریک را برای کنترل ارتعاشات فعال یک پوستهٔ هدفمند تحت دما را بررسی نمودهاند. تحلیل ایشان بر اساس تئوری مرتبه اول برشی و با استفاده از روش المان محدود انجام گرفته است. در سال 2010 میلادی علىبيگلو و چن [10] به تحليل الاستيک يک پوستهٔ استوانهاى هدفمند با لایههای پیزوالکتریک پرداختهاند. آنها با استفاده از بسط سریهای فوریه در راستای طولی و محیطی، معادلهٔ حرکت را بهدست آورده و تأثیر توزیع گرادیان مواد، اعمال ولتاژ و نسبت شعاع بر ضخامت پوسته را روی رفتار

استاتیکی پوستهی هدفمند مطالعه نمودهاند. در همین سال شنگ و وانگ کنترلی استفاده کرده و بهینهسازی را با استفاده از الگوریتم تجمع ذرات انجام دادهاند. در همین سال طاهری و همکارانش [29] به بهینهسازی توزیع [8] رفتار پوستهٔ استوانهای هدفمند با لایههای پیزو الکتریک به عنوان مواد در یک ورق هدفمند و با استفاده از روش حل ایزوژئومتریک و بهرهگیری سنسور و عملگر را تحت شوک حرارتی و بار متحرک بررسی نمودهاند. آنها بر از نقاط کنترلی پرداختهاند. اساس تئوری مرتبه اول برشی و با استفاده از آنالیز مودال و روش نیومارک به تحلیل پاسخ دینامیکی سازه پرداختهاند. مطالعهٔ دیگری در همین سال در مقاله حاضر طراحی بهینه توزیع مواد و ضخامت لایهٔ هدفمند در یک توسط على بيگلو و نوري [11] انجام شده است. ايشان حل الاستيک سهبعدي پوستهٔ استوانهای هدفمند با رویهٔ پیزوالکتریک به عنوان یک ساختار هوشمند مورد بررسی قرار گرفته است. بدین منظور ابتدا تنشهای ناشی از اثرات یک پوستهٔ استوانهای هدفمند با لایه پیزوالکتریک را با استفاده از روش کوادراتور دیفرانسیلی ارائه نموده و سیس اثر مستقیم و معکوس پیزوالکتریک، دینامیکی با استفاده از تئوری مرتبه اول برشی و با استفاده از سریهای فوریه

مہندسی مکانیک مدرس، آبان 1394، دورہ 15، شمارہ 8

www.SID.ir

292

بهدست آمده و سپس با استفاده از معیار هاشین-شتریکمن برای تعیین توزیع تنش تسلیم به بهینهسازی سازه با هدف رسیدن به سازهای با بیشینه تنش مطلوب پرداخته شده است. بار جانبی اعمال شده متحرک بوده و نقطه اثر آن در طول پوسته با سرعت معینی در حرکت است. بههمین دلیل، در تحلیل رفتار سازه اثرات دینامیکی ناشی از حرکت بار میباید در نظر گرفته شود. در نتیجه تنشها، کرنشها و جابهجاییها تابع زمان بوده و این اثر دینامیکی، موجب افزایش مقادیر تنش، کرنش و جابهجایی [4] نسبت به حالت بار ایستا میشود. به این دلیل، بهجای معادلات تعادل، از معادلات حرکت وابسته به زمان استفاده شده و رفتار وابسته به زمان سازه بررسی شده است. برای بهینهسازی از نقاط کنترلی در لایهٔ هدفمند و در طول ضخامت پوسته استفاده شده و بهمنظور کاهش زمان حل از پردازش موازی استفاده شده است. خواص معادل نيز با قانون اختلاط تعيين شدهاند.

2-مشخصات مسأله

 h در پژوهش پیش رو، پوستهٔ استوانهای هدفمندی با شعاع میانی R ، ضخامت و طول L مورد بررسی قرار گرفته است. فرض شده یک لایهٔ پیزوالکتریک با ضخامت hp بر روی پوستهٔ هدفمند متصل شده باشد. هندسهٔ شماتیک مسئله در شكل 1 قابل مشاهده است. لايهٔ هدفمند تركيب سيليكون كاربيد و آلومينيم 2024 و لاية پيزوالكتريك از جنس PZT-4 مي باشند. همان طوركه در شكل 1 قابل مشاهده است، ردیفی از بارها در راستای طولی استوانه با سرعت ثابت در حال حركت است. رابطهٔ **(1)** تابع توزيع بار را توصيف مى كند:
«

$$
f(\mathbf{x},t) = \sum_{i=1}^{r} F_i(t) \delta(\mathbf{x} - x_i) \delta(\theta - \theta_i) \Pi_i(t)
$$
 (1)

که در آن $F_i(t)$ تابع تغییرات هریک از بارهای وارد با زمان و 6 تابع دلتای دیراک $^{-1}$ است. همچنین $\Pi_i(t)$ تابع باکسکار $^{-2}$ و X مطابق روابط (2) و (3) است. ا در این رابطه، θ یا زاویهٔ اعمال بار (زاویهی موقعیت اعمال بار) در حقیقت همان زاويهاي نشان دهندهٔ موقعيت اعمال بار مطابق شكل زير مىباشد؛ بدين معنی که در صورت صفر بودن زاویه، نیروی شعاعی جانب به مرکز از کنار لوله به صورت افقی اعمال میشود و یا درصورت 90 درجه بودن آن، این نیرو از بالا بهصورت عمودي اعمال ميشود.

$$
\Pi_i(\mathbf{t}) = H(\mathbf{t} - t_{i-1}) - H(\mathbf{t} - t_{i-1} - t_L), t_L = \frac{L}{V}
$$
\n
$$
x_i = V \Delta t_i, \Delta t_i = t - t_{i-1}
$$
\n(3)

که در آن H نشانگر تابع پلهای هویساید و V سرعت حرکت بار میباشند.

3 - الگوي توزيع مواد

بهمنظور یافتن گرادیان مواد بهینه در مادهٔ هدفمند، میتوان مقادیر درصد حجمی مواد بهینه را در نقاط کنترلی تعیین کرده و در فاصلهٔ بین این نقاط

$$
1 \cdot \cdot \cdot
$$

از میان یابی استفاده کرد. با انتخاب N+1 نقطهٔ کنترلی و تقسیم پوستهٔ هدفمند به N بازه با ضخامت یکسان، موقعیت هر نقطهی کنترلی را میتوان با استفاده از رابطهی (4) بهدست آورد:

 $z_n = z_b + \frac{z_t - z_b}{N} (n - 1), n = 1, ..., N + 1$ (4) که در آن Zb ،Zn و Zt بهترتیب موقعیت nامین، اولین و آخرین نقطهٔ کنترلی میباشند. درصد حجمی مواد متناظر با نقطهی کنترلی شماره n با λ_n نمایش داده شده و مقادیر درصد حجمی مواد و ضخامت لایهٔ هدفمند به عنوان متغیرهای طراحی درنظر گرفته شدهاند. پس از تعیین مقادیر د7رصد حجمی مواد در نقاط کنترلی، گرادیان مواد در بین این نقاط با استفاده از توابع میان یابی درجه سوم هرمیت $\left(\bar{\bm{H}}\,\right)^{\,3}$ با رابطهٔ (5) تعیین شده است.

$$
\lambda(z) = \lambda_n \overline{H}_1(z) + (z_{n+1} - z_n) S_n \overline{H}_2(z) + \lambda_{n+1} \overline{H}_3(z)
$$

+ $(z_{n+1} - z_n) S_{n+1} \overline{H}_4(z)$ (5)

که در آن λ_n و S_n مقدار درصد حجمی و شیب توزیع درصد حجمی مواد در نقطهٔ کنترلی nام مے باشند. مقادیر \bar{H} یا رابطهٔ (6) بهدست مے آید $[27]$:

$$
\overline{H}_1(\mathbf{z}) = B_0 \left(\frac{z - z_n}{z_{n+1} - z_n} \right) + B_1 \left(\frac{z - z_n}{z_{n+1} - z_n} \right)
$$
\n
$$
\overline{H}_2(\mathbf{z}) = \frac{1}{3} B_1 \left(\frac{z - z_n}{z_{n+1} - z_n} \right)
$$
\n
$$
\overline{H}_3(\mathbf{z}) = B_2 \left(\frac{z - z_n}{z_{n+1} - z_n} \right) + B_3 \left(\frac{z - z_n}{z_{n+1} - z_n} \right)
$$
\n
$$
\overline{H}_4(\mathbf{z}) = -\frac{1}{3} B_2 \left(\frac{z - z_n}{z_{n+1} - z_n} \right)
$$
\n(6)\n
$$
\text{(6)}
$$
\n
$$
[30]
$$

$$
B_k(t) = \binom{3}{k} t^k (1-t)^{3-k}
$$
\n(7)

$$
S_{1} = \frac{4\lambda_{2} - 3\lambda_{1} - \lambda_{3}}{2(z_{n+1} - z_{n})}, S_{N+1} = \frac{-4\lambda_{N} + 3\lambda_{N+1} + \lambda_{N-1}}{2(z_{n+1} - z_{n})}
$$

$$
S_{n} = \frac{\lambda_{n+1} - \lambda_{n-1}}{2(z_{n+1} - z_{n})}, n = 2, 3, ..., N
$$
(8)

4-تعيين خواص معادل

با توجه به اینکه مواد هدفمند از دو یا چند فاز متفاوت تشکیل شدهاند، خواص مؤثر این مواد باید از طریق کسرهای حجمی و مشخصات فازهای تشکیل دهنده تعیین شوند. بدین منظور در این بررسی مطابق رابطهٔ (9) از قانون اختلاط براي تعيين خواصٌ معادل استفاده شده است [31]:

$$
P_{eff}(z) = \sum_{j=1}^{M} P_j \lambda_j \sum_{j=1}^{M} \lambda_j = 1
$$
 (9)

که در آن P_j خاصیت فیزیکی مورد بحث برای ماده آام و M تعداد کل مواد است. خواص فيزيكي مفروض براي مواد در جداول 1 و 2 [33.32] قابل مشاهدهاند. با توجه به بازهٔ تغییرات کوچک ضریب پواسون [11]، اثر تغییرات آن قابل چشمپوشی است و برای تمام مواد برابر با 9٫3 فرض شده است. برای

3- Cubic Hermite spline

1- Dirac Delta Function 2- Boxcar Function

مہندسی مکانیک مدرس، آبان 1394، دورہ 15، شمارہ 8

www.SID.ir

293

در رابطه k (14) انحنای صفحهٔ میانی میباشد. ضرایب A، B، A و C نیز از روابط (16) و (17) تعيين مي شوند [33]: $(A_{ij}, B_{ij}, D_{ij}) = \int_{-h/2}^{h/2} Q_{ij} (1, z, z^2) dz$ $(i, j = 1, 2, 6)$ (16) $C_{44} = \int_{b}^{h/2} Q_{55} dz$ $C_{55} = \int_{-b/2}^{b/2} Q_{44} dz$ (17)

براي لايهٔ پيزوالكتريک رابطهٔ تنش-کرنش و جابهجايي الكتريكي مطابق روابط (18) و (19) میباشند [13.8]:

$$
\begin{pmatrix}\n\sigma_y^p \\
\sigma_y^p \\
\tau_{z\theta}^p \\
\tau_{z\theta}^p \\
\tau_{z\theta}^p\n\end{pmatrix} = \begin{bmatrix}\nQ_{11e} & Q_{12e} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & Q_{12e} & Q_{2e} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & Q_{44e} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0
$$

$$
S_{y} = \begin{cases} 2 & \text{and } \frac{2}{5} \sqrt{1 + \frac{3V_{1}}{2}} < \frac{S_{y}^{(2)}}{S_{y}^{(1)}} \le 1, V_{1} < 1 \le r\\ \frac{5V_{1}}{3 + 2V_{1}} S_{y}^{(1)} + \frac{3V_{2}}{3 + 2V_{1}} S_{y}^{(2)} & \frac{1}{3 + \frac{2V_{1}}{3}} [1 - \frac{S_{y}^{(1)}}{S_{y}^{(2)}})^{2}]\\ \frac{5V_{2}}{3 + \frac{3V_{1}}{2}} & \text{and } \frac{S_{y}^{(2)}}{S_{y}^{(1)}} \le \frac{2}{5} \sqrt{1 + \frac{3V_{1}}{2}} \quad , V_{1} < 1 \le r\\ S_{y}^{(1)} & \text{and } V_{1} = 1 \le r \end{cases}
$$
(11)

5-تعيين ميدان جابهجايي و مقادير تنش- كرنش

بر مبنای تئوری مرتبه اول برشی جابهجاییها در یک پوستهٔ استوانه را میتوان با استفاده از رابطهٔ (12) تعیین کرد [36]:

$$
u_1(x, \theta, z, t) = u(x, \theta, t) + z\phi_1(x, \theta, t)
$$

\n
$$
v_1(x, \theta, z, t) = v(x, \theta, t) + z\phi_2(x, \theta, t)
$$

\n
$$
w_1(x, \theta, z, t) = w(x, \theta, t)
$$

\n(12)

که در آن $\big(u,v,w \big)$ و $\big(u_{1},v_{1},w_{1} \big)$ بهترتیب جابهجایی در صفحهی میانی و جابهجایی در هر نقطهٔ دلخواه میباشند. همچنین ϕ_1 و ϕ_2 بهترتیب θ چرخش عمود بر صفحات میانی در راستای محورهای x و θ می باشند. براي پوستهٔ هدفمند رابطهٔ تنش-کرنش با رابطهٔ (13) تعریف میشود:

$$
\begin{pmatrix} \sigma_x \\ \sigma_{\theta} \\ \tau_{x\theta} \\ \tau_{\theta z} \\ \tau_{xz} \end{pmatrix} = \begin{bmatrix} Q_{11} & Q_{12} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ Q_{12} & Q_{22} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & Q_{66} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & Q_{44} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & Q_{55} \end{bmatrix} \begin{pmatrix} \varepsilon_x \\ \varepsilon_{\theta} \\ \gamma_{x\theta} \\ \gamma_{\theta z} \\ \gamma_{xz} \end{pmatrix}
$$
(13)

مہندسی مکانیک مدرس، آبان 1394، دورہ 15، شمارہ 8

294

 (14)

 (15)

www.SID.ir

[www.SID.ir](www.sid.ir)

295

$$
C_{44}^{P} = \int_{\frac{h}{2}}^{h_{p} + \frac{h}{2}} Q_{55e} dz
$$
\n
$$
C_{55}^{P} = \int_{h/2}^{h_{p} + h/2} Q_{44e} dz
$$
\n
$$
C_{55}^{P} = \int_{h/2}^{h/2} Q_{44e} dz
$$
\n
$$
\left\{\begin{array}{l}\nN_{E}^{E} \\
N_{B}^{E} \\
N_{E}^{E}\n\end{array}\right\} = \left\{\begin{array}{l}\n2e_{31e} \int_{h/2}^{h/2+h_{p}} z_{p} dz \\
2e_{32e} \int_{h/2}^{h/2+h_{p}} z_{p} dz\n\end{array}\right\} \psi
$$
\n
$$
\left\{\begin{array}{l}\nM_{E}^{E} \\
N_{E}^{E} \\
N_{E}^{E}\n\end{array}\right\} = \left\{\begin{array}{l}\n2e_{31e} \int_{h/2}^{h/2+h_{p}} z_{p} dz \\
2e_{32e} \int_{h/2}^{h/2+h_{p}} z_{2p} dz \\
N_{E}^{P}\n\end{array}\right\} \psi
$$
\n
$$
Q_{x}^{E} = e_{15} \int_{\frac{h}{2}}^{\frac{h}{2} + h_{p}} P(z_{p}) dz \frac{\partial \psi}{\partial x}
$$
\n
$$
Q_{x}^{E} = e_{24} \int_{h/2}^{h/2+h_{p}} P(z_{p}) dz \frac{\partial \psi}{\partial \theta}
$$
\n
$$
= \left\{\begin{array}{l}\n1 & \text{if } 2 + h_{p} \text{ is } 2 \text{ and } \frac{\partial \psi}{\partial \theta} \\
1 & \text{if } 37 \text{ is } 1.37 \text{ if } 2.37 \text{ if } 2.88 \text
$$

$$
\frac{\partial (P)}{\partial x} = \frac{1}{R} \frac{\partial (N_x + N_x^p)}{\partial x} + \frac{1}{R} \frac{\partial (N_x + N_x^p)}{\partial \theta} = \frac{1}{R} \frac{\partial (N_x + N_y^p)}{\partial \theta} = \frac{1}{R} \frac{\partial (N_x + N_y^p)}{\
$$

$$
\frac{\partial x}{\partial x} + R = \frac{\partial \theta}{\partial y} + R^{(1)}\vec{v} + \vec{V}_2 + I_2^p \vec{v}_\theta
$$
\n
$$
\frac{\partial (Q_x + Q_x^p)}{\partial x} + \frac{1}{R} \frac{\partial (Q_\theta + Q_\theta^p)}{\partial \theta} - \frac{1}{R} (N_\theta + N_\theta^p) + f(x, t)
$$
\n
$$
= \vec{V}_1 + I_1^p \vec{v}_w
$$
\n
$$
\frac{\partial (M_{x\theta} + M_{x\theta}^p)}{\partial x} + \frac{1}{R} \frac{\partial (M_{x\theta} + M_{x\theta}^p)}{\partial \theta} - (Q_\theta + Q_\theta^p)
$$
\n
$$
= \vec{V}_2 + I_2^p \vec{v}_u + \vec{V}_3 + I_3^p \vec{v}_x
$$
\n
$$
\frac{\partial (M_{x\theta} + M_{x\theta}^p)}{\partial x} + \frac{1}{R} \frac{\partial (M_\theta + M_\theta^p)}{\partial \theta} - (Q_\theta + Q_\theta^p)
$$
\n
$$
= \vec{V}_2 + I_2^p \vec{v}_v + (\vec{V}_3 + I_3^p) \vec{\phi}_\theta
$$
\n
$$
= \vec{V}_2 + I_2^p \vec{v}_v + (\vec{V}_3 + I_3^p) \vec{\phi}_\theta
$$
\n(29)

|¿ÂÊ»¦Ë e (32) Ze (30)]YÁ

$$
u = \sum_{m=0}^{M} \sum_{n=0}^{N} u_{mn}(t) \cos(\lambda_{m}x) \cos(n\theta)
$$
\n
$$
v = \sum_{m=1}^{M} \sum_{n=0}^{N} v_{mn}(t) \sin(\lambda_{m}x) \sin(n\theta)
$$
\n
$$
w = \sum_{m=1}^{M} \sum_{n=0}^{N} w_{mn}(t) \sin(\lambda_{m}x) \cos(n\theta)
$$
\n
$$
\phi_{x} = \sum_{m=1}^{M} \sum_{n=0}^{N} \phi_{mn}(t) \cos(\lambda_{m}x) \cos(n\theta)
$$
\n
$$
\phi_{x} = \sum_{m=1}^{M} \sum_{n=1}^{N} \phi_{mn}(t) \cos(\lambda_{m}x) \cos(n\theta)
$$
\n
$$
\phi_{\theta} = \sum_{m=1}^{M} \sum_{n=1}^{N} \overline{\phi}_{mn}(t) \sin(\lambda_{m}x) \cos(n\theta)
$$
\n
$$
\psi = \sum_{m=1}^{M} \sum_{n=1}^{N} \overline{\phi}_{mn}(t) \sin(\lambda_{m}x) \cos(n\theta)
$$
\n
$$
\psi = \sum_{m=1}^{M} \sum_{n=0}^{N} \psi_{mn}(t) \sin(\lambda_{m}x) \cos(n\theta)
$$
\n
$$
\psi = \sum_{m=1}^{M} \sum_{n=0}^{N} \psi_{mn}(t) \sin(\lambda_{m}x) \cos(n\theta)
$$
\n
$$
\phi_{\theta} = \sum_{m=1}^{M} \sum_{n=0}^{N} \psi_{mn}(t) \sin(\lambda_{m}x) \cos(n\theta)
$$
\n
$$
\phi_{\theta} = \sum_{m=1}^{M} \sum_{n=0}^{N} \psi_{mn}(t) \sin(\lambda_{m}x) \cos(n\theta)
$$
\n
$$
\phi_{\theta} = \sum_{m=1}^{M} \sum_{n=0}^{N} \psi_{mn}(t) \sin(\lambda_{m}x) \cos(n\theta)
$$
\n
$$
\phi_{\theta} = \sum_{m=1}^{M} \sum_{n=1}^{N} \psi_{mn}(t) \sin(\lambda_{m}x) \cos(n\theta)
$$
\n
$$
\phi_{\theta} = \sum_{m=1}^{M} \sum_{n=1}^{N} \psi_{mn}(t) \sin(\lambda_{m}x
$$

$$
\varepsilon_{x} = \frac{\partial u}{\partial x}, \varepsilon_{\theta} = \frac{1}{R} \left(\frac{\partial v}{\partial \theta} + w \right)
$$
\n
$$
\gamma_{x\theta} = \frac{\partial v}{\partial x} + \frac{1}{R} \frac{\partial u}{\partial \theta}, \gamma_{xz} = \phi_{x} + \frac{\partial w}{\partial x}, \gamma_{\theta z} = \phi_{\theta} + \frac{1}{R} \frac{\partial w}{\partial \theta} \qquad (30)
$$
\n
$$
\kappa_{x} = \frac{\partial \phi_{x}}{\partial x}, \kappa_{\theta} = \frac{1}{R} \frac{\partial \phi_{\theta}}{\partial \theta}, \kappa_{x\theta} = \frac{\partial \phi_{\theta}}{\partial x} + \frac{1}{R} \frac{\partial \phi_{x}}{\partial \theta} \qquad (31)
$$
\n
$$
U_{11}I_{21}I_{3} = \int_{-\frac{h}{2}}^{\frac{h}{2}} \rho_{eff}(z) (1, z_{1}z^{2}) dz
$$
\n
$$
U_{11}^{P}I_{21}^{P}I_{3}^{P} = \int_{h/2}^{h/2 + h_{p}} \rho^{P} (1, z_{1}z^{2}) dz \qquad (32)
$$
\n
$$
\varepsilon_{x} = \frac{\partial U_{11}^{P}I_{21}^{P}I_{21}^{P}}{\partial \theta} = \int_{h/2}^{h/2 + h_{p}} \rho^{P} (1, z_{1}z^{2}) dz \qquad (33)
$$
\n
$$
\varepsilon_{x} = \frac{\partial U_{21}^{P}I_{21}^{P}I_{21}^{P}}{\partial \theta} = \int_{h/2}^{h/2 + h_{p}} \rho^{P} (1, z_{1}z^{2}) dz \qquad (34)
$$

$$
L_{11}u + L_{12}v + L_{13}w + L_{14}\phi_{x} + L_{15}\phi_{\theta} + L_{16}\psi_{x}
$$
\n
$$
= (I_{1} + I_{1}^{P})\ddot{u} + (I_{2} + I_{2}^{P})\ddot{\phi}_{x}
$$
\n
$$
L_{21}u + L_{22}v + L_{23}w + L_{24}\phi_{x} + L_{25}\phi_{\theta} + L_{26}\psi
$$
\n
$$
= (I_{1} + I_{1}^{P})\ddot{v} + (I_{2} + I_{2}^{P})\ddot{\phi}_{\theta}
$$
\n
$$
L_{31}u + L_{32}v + L_{33}w + L_{34}\phi_{x} + L_{35}\phi_{\theta} + L_{36}\psi
$$
\n
$$
+ f(x,t) = (I_{1} + I_{1}^{P})\ddot{w}
$$
\n
$$
L_{41}u + L_{42}v + L_{43}w + L_{44}\phi_{x} + L_{45}\phi_{\theta} + L_{46}\psi
$$
\n
$$
= (I_{2} + I_{1}^{P})\ddot{u} + (I_{3} + I_{3}^{P})\ddot{\phi}_{x}
$$
\n
$$
L_{51}u + L_{52}v + L_{53}w + L_{54}\phi_{x} + L_{55}\phi_{\theta} + L_{56}\psi
$$
\n
$$
= (I_{2} + I_{2}^{P})\ddot{v} + (I_{3} + I_{3}^{P})\ddot{\phi}_{\theta}
$$
\n
$$
= (I_{2} + I_{2}^{P})\ddot{v} + (I_{3} + I_{3}^{P})\ddot{\phi}_{\theta}
$$
\n
$$
= (I_{2} + I_{2}^{P})\ddot{v} + (I_{3} + I_{3}^{P})\ddot{\phi}_{\theta}
$$
\n
$$
= (I_{2} + I_{2}^{P})\ddot{v} + (I_{3} + I_{3}^{P})\ddot{\phi}_{\theta}
$$
\n
$$
= (33)
$$
\n
$$
\int_{h/2}^{h/2} \left(\frac{\partial D_{x}}{\partial x} + \frac{1}{R} \frac{\partial D_{\theta}}{\partial \theta} + \frac{\partial D_{z}}
$$

$$
= \frac{2}{\pi L} \sum_{i=1} F_i(t) \sin[\lambda_m x_i(t)] \cos(n\theta_0)
$$
\n
$$
Y_{x\theta} = \frac{3}{\pi L} \sum_{i=1} F_i(t) \sin[\lambda_m x_i(t)] \cos(n\theta_0)
$$
\n
$$
Y_{x\theta} = \frac{3}{\pi L} \sum_{i=1} F_i(t) \sin[\lambda_m x_i(t)] \cos(n\theta_0)
$$
\n
$$
+ T_{43} W_{mn} + T_{44} \phi_{mn} + T_{45} \overline{\phi}_{mn}
$$
\n
$$
+ T_{46} \psi_{mn} + T_{42} V_{mn} + T_{45} \overline{\phi}_{mn}
$$
\n
$$
+ (I_3 + I_3^E) \ddot{\phi}_{mn}(t) = 0
$$
\n
$$
T_{51} u_{mn} + T_{52} v_{mn} + T_{53} w_{mn} + T_{54} \phi_{mn} + T_{55} \overline{\phi}_{mn}
$$
\n
$$
+ (I_3 + I_3^E) \ddot{\phi}_{mn}(t) = 0
$$
\n
$$
T_{61} u_{mn} + T_{62} v_{mn} + T_{63} w_{mn} + T_{64} \phi_{mn} + T_{65} \overline{\phi}_{mn}
$$
\n
$$
+ T_{66} \psi_{mn} = 0
$$
\n(38)

مهندسی مکانیک مدرس، آبان 1394، دوره 15، شماره 8

$$
\lambda_m = \frac{m\pi}{L} \tag{37}
$$

با جانشانی معادلات (36) در (33) و (35) روابط (38) بهدست می آیند: $T_{11}u_{mn}$ + $T_{12}v_{mn}$ + $T_{13}w_{mn}$ + $T_{14}\phi_{mn}$ + $T_{15}\phi_{mn}$ $+ T_{16} \psi_{mn} + (I_1 + I_1^E) \ddot{u}_{mn}(t)$ $+(I_2 + I_2^E)\phi_{mn}(t) = 0$ $T_{21}u_{mn}$ + $T_{22}v_{mn}$ + $T_{23}w_{mn}$ + $T_{24}\phi_{mn}$ + $T_{25}\phi_{mn}$ $+ T_{26} \psi_{mn} + (I_1 + I_1^E) \psi_{mn}(t)$ $+(I_2 + I_2^E)\phi_{mn}(t) = 0$ $T_{31}u_{mn}$ + $T_{32}v_{mn}$ + $T_{33}w_{mn}$ + $T_{34}\phi_{mn}$ + $T_{35}\phi_{mn}$ + $T_{36} \psi_{mn}$ + $(I_1 + I_1^E) \ddot{w}_{mn}(t)$ N_p

[www.SID.ir](www.sid.ir)

مہندسی مکانیک مد*ر*س، آبان 1394، دورہ 15، شما*ر*ہ 8 $296\,$

توجه به آخرين معادلهٔ از دسته معادلات (38)، پتانسيل الكتريكي القا شده بەصورت معادلهٔ (39) به دست می آید:

$$
\psi_{mn} = \frac{\mathbf{1}}{T_{66}} \mathbf{I} - T_{61} u_{mn} - T_{62} v_{mn} - T_{63} w_{mn} - T_{64} \phi_{mn} - T_{65} \bar{\phi}_{mn} \mathbf{I}
$$
\n(39)

ĸX»]º¯ZucÓ{Z »,(38) dz¿ È·{Z »lÀa{ (39) È]YÊ¿Z¿ZmZ] |ÀËMÊ»d{Ä] (40) È]Y¶°Ä]

$$
[M](\ddot{q}) + (K_E] - \frac{1}{T_{66}} (K_{P1}) (K_{P2})^T (q) = (F_M)
$$
 (40)

$$
[M] =\n\begin{bmatrix}\nI_1 + I_1^P & 0 & 0 & I_2 + I_2^P & 0 \\
0 & I_1 + I_1^P & 0 & 0 & I_2 + I_2^P \\
0 & 0 & I_1 + I_1^P & 0 & 0 \\
I_2 + I_2^P & 0 & 0 & I_3 + I_3^P & 0 \\
I_2 + I_2^P & 0 & 0 & I_3 + I_3^P & 0 \\
0 & I_2 + I_2^P & 0 & 0 & I_3 + I_3^P\n\end{bmatrix}\n\tag{41}
$$
\n
$$
[K_{\Gamma}] =\n\begin{bmatrix}\nT_{11} & T_{12} & T_{13} & T_{14} & T_{15} \\
T_{21} & T_{22} & T_{23} & T_{24} & T_{25} \\
T_{21} & T_{22} & T_{23} & T_{24} & T_{25} \\
T_{21} & T_{22} & T_{22} & T_{24} & T_{25} \\
T_{23} & T_{23} & T_{24} & T_{25} \\
T_{31} & T_{32} & T_{33} & T_{34} & T_{35}\n\end{bmatrix}\n\tag{41}
$$

$$
\begin{bmatrix}\nK_E\n\end{bmatrix} = \begin{bmatrix}\nT_{31} & T_{32} & T_{33} & T_{34} & T_{35} \\
T_{41} & T_{42} & T_{43} & T_{44} & T_{45} \\
T_{51} & T_{52} & T_{53} & T_{54} & T_{55}\n\end{bmatrix}
$$
\n(42)

$$
(K_{P1})^T = (T_{16} T_{26} T_{36} T_{46} T_{56})
$$
\n(43)

$$
(K_{P2})^T = (T_{61} T_{62} T_{63} T_{64} T_{65})
$$
\n(44)

$$
(\mathbf{q})^T = (u_{mn} \; v_{mn} \; \phi_{mn} \; \overline{\phi}_{mn})^T \tag{45}
$$

$$
\mathbf{F}_{M}\mathbf{y}^{T}
$$
\n
$$
= \left\{\mathbf{0}\mathbf{0}\frac{\mathbf{2}}{\pi L}\sum_{i=1}^{N_{p}}F_{i}(\mathbf{t})sin[\lambda_{m}x_{i}(\mathbf{t})]cos(n\theta_{0})\mathbf{0}\mathbf{0}\right\}
$$
\n(46)

{ } ^T ©Â§]YÁ{ *M* ÃZ´f{¶uÉY] .dYvf»Z]Ä]Â]»ÉZÅÁÌ¿ *^F* dYÃ|Ã{Z¨fY [39] Z»ÂÌ¿¶uÁY©Â§

ÉZÄÀÌÆ] -6

 ʰÌf¿ºfË´·Y-1 -6

والدين از روش وزندهي بر اساس رتبه استفاده شده است [40]. بدين منظور احتمال متناظر با هي تبه (n) با رابطهٔ (48) محاسبه م_{عا}شود:

Archive of SID {ÂÊ» ½ZÌ] (47) È]YcÂÄ]{Âm» ÉZÄÀÌÆ] ȸX» ʸ¯ ¶° (47) (݉ , ...1, = ݅) ,ߣ ߣ ,ߣ ^ଵߣ] = ߣ ߣ ,..., [ߣ , ..., ܬ)ߣ, ([ZeÉZÄÀ̼¯ ݃(ߣ, (0| Ì«Ä]ÄmÂeZ]

که در ان **J ، J** و p بهترتیب تابع هدف، بردار متغیرهای طراحی و بردار توابت میباشند. هر متغیر طراحی بین دو حد پایین ($\lambda_{i,lB}$) و بالا ($\lambda_{i,lB}$) محدود شده است. بهینهسازی شامل دستهای از قیود (*g*) است. در این بررسی، مسألهٔ بهينهسازي با الگوريتم ژنتيكي حل شده است. با توجه به حجم محاسبات و زمان بر بودن حل آنها، از پردازش موازی استفاده شده است.

$$
g(x) \ge g_0 \tag{49}
$$
\n
$$
\hat{I} = I + \text{trace}(\mathbf{0}, \mathbf{I}_C, \dots, \mathbf{c}(x))
$$

$$
j = J + \kappa max{\lbrace 0, [g_0 - g(x)] \rbrace}
$$
 (50)

که در این روابط g_0 مقدار حدی قید و \bm{i} نشاندهندهٔ تابع هدف پس از اعمال جريمه مي باشد. مقدار ضريب جريمه (k) عددي نسبتاً بزرگ انتخاب مي شود تا منجر به رعايت قيود شود.

بهمنظور استفاده از قابلیت پردازش موازی، با توجه به زمانبر بودن محاسبهٔ مقدار تابع هدف، جمعیت به چهار قسمت تقسیم شده و محاسبات برای کهریک از زیرجمعیتها توسط حلقههای با پردازش موازی در یکی از **A** هستههای کامپیوتر انجام یافته است تا زمان بهینهسازی کاهش یابد.

ÉZÄÀÌÆ] ȸX» É|À]µÂ»§-2 -6

در این بررسی با استفاده از روش الگوریتم ژنتیکی به تعیین ضخامت و توزیع بهينهٔ مواد در لايهٔ هدفمند پرداخته شده است.

تابع هدف و قيد مطرح در مسأله بهصورت رابطهٔ (51) ميباشند:

$$
\int \left(\frac{S_y}{\hat{\sigma}} - FS\right) dz
$$
\n
$$
\frac{S_y}{\hat{\sigma}} \ge FS
$$
\n
$$
\frac{1}{\hat{\sigma}} \ge FS
$$

که در آن $\widehat{\sigma}$ بیشینه مقادیر میدان تنش معادل در راستای z برای کل بازهی زمان و در دو راستای طول و زاویه است. برای محاسبهٔ مقدار $\widehat{\sigma}$ ابتدا مقدار تنش معادل فون-مایسز (¿ o) با استفاده از رابطهٔ (52) محاسبه شده و سیس بیشترین مقدار تنش برای هر نقطه در راستای z در بازهی زمانی، طول قطعه و بازهٔ زاویهٔ موجود محاسبه میشود.

$$
\sigma^* = \sqrt{(\sigma_x - \sigma_\theta)^2 + \sigma_x^2 + \sigma_\theta^2 + 6(\tau_{x\theta}^2 + \tau_{xz}^2 + \tau_{\theta z}^2)}
$$
(52)

الگوریتم ژنتیکی یک روش جستجو و بهینهسازی بر پایهٔ انتخاب طبیعی است. این الگوریتم جمعیت دادهها را تحت قانون انتخابی مشخصی بهبود میدهد. برای بهینهسازی با این الگوریتم، ابتدا یک جمعیت اولیه تولید میشود. در بررسی حاضر هر عضو جمعیت برداری شامل درصد حجمی مواد در نقاط کنترلی و ضخامت لایهٔ هدفمند میباشد. در مرحلهی بعد مقادیر جمعیت بر حسب تابع هدف، ارزیابی و مرتب میشوند. پس از مرتبسازی، نیمی از جمعیت نامناسب حذف میشوند. سپس با انتخاب والدین از میان دادههای باقیمانده، دادههای جدید تولید میشود. در این بررسی برای انتخاب

در محاسبات بهینه سازی، متغیرهای طراحی ضخامت لایهٔ هدفمند و مقدار کسرهای حجمی در هریک از نقاط کنترلی می باشند. 7 -نتايج 1-1-اعتبارسنجي بهمنظور اعتبارسنجی روش حل تحلیلی-عددی که جزئیات آن در بخشهای قبل ارائه شده است، نتايج بهدست آمده براي الگوي توزيع درصد حجمي مواد مطابق با رابطهي (53) با نتايج مرجع [8] مقايسه شده است.

$$
P_n = \sum_{i=1}^n \frac{\overline{N} - n + \mathbf{1}}{\sum_{i=1}^{\overline{N}} n}
$$
(48)

که در آن N تعداد اعضای جمعیت باق_یمانده است که برابر با نصف جمعیت کل است. برای انتخاب والدین، پس از محاسبهٔ مقدار رابطهٔ (48) برای هریک از اعضای جمعیت، با انتخاب دو عدد تصادفی هریک از والدین انتخاب می شوند. پس از انتخاب پدر و مادر، با اعمال عملگر تقاطع پیوسته روی تمامی جمعیت باقی،مانده، هر جفت از والدین دو فرزند تولید کرده و با توجه به حذف نصف جمعیت در مراحل قبل، تعداد اعضای جمعیت ثابت خواهد ماند. عملگر تقاطع براي جلوگيري از همگرايي الگوريتم در كمينهٔ محلي، از عملگر جهش استفاده شده است. پس از این مرحله مقدار تابع هدف به ازای هر یک از دادههای جدید حساب شده و مراحل فوق تا همگرایی الگوریتم به جواب بهينه ادامه يافته است. براي اعمال قيود، تابع جريمه بهكار گرفته شده است. برای مثال، تابع جریمه در قید نمونهٔ مطرح در رابطهٔ (49)، به شکل رابطهٔ (50) مے باشد:

طراحي بهينهٔ يوستهٔ استوانهاي هدفمند با لايهٔ پيزوالکتريک تحت بار متحرک

$$
\lambda(z) = \left(\frac{z}{h} + \frac{1}{2}\right)^{\phi} \tag{53}
$$

علت انتخاب چنین توزیع حجمی مواد، تشابه آن با الگوی ارائه شده در مرجع [8] می باشد. همچنین لایهٔ هدفمند حاصل ترکیب دو مادهی آلومینیم و زیرکونیا و لایهٔ پیزوالکتریک از جنس PZT-4 میباشند. فرضیات و ابعاد هندسی ذکر شده در جدول 3 مطابق فرضیات مرجع [8] در نظر گرفته شدهاند. شکل 2 مقایسهی جابهجایی شعاعی بهدست آمده با نتایج منبع [8] را نشان میدهد. چنانچه از شکل 2 مشاهده میشود، نتایج با هم انطباق خوبی داشته، از صحت و قابلیت روش حل اطمینان حاصل شده است.

8- نتايج بهينهسازي

با توجه به اینکه در عمل توزیع درصد حجمی مواد میتواند بهصورتهای مختلفی باشد، بههمین دلیل استفاده از توابع توزیع پیشفرض مثل توزیع توانی که در مرجع [8] مورد استفاده قرار گرفته است، نه تنها محدودیتی در روش حل اعمال می کند، بلکه امکان دسترسی به توزیع بهینه نیز بسیار محدود میشود. لذا در روش پیشنهادی از ترکیب نقاط کنترلی و میان یابی برای تعیین توزیع حجمی مواد استفاده شده است. پاسخهای مراحل بهینهسازی ضخامت و توزیع بهینهی مواد در این بخش ارائه شدهاند، با رابطهى (50) بهدست آمدهاند. مشخصات مسئلة در جدول 4 آمده است.

در این قسمت ابتدا، تعداد جملات سریها بهمنظور تعیین همگرایی سریهای موجود در رابطهٔ (36) مورد بررسی قرار گرفته است. بدینمنظور تنش مؤثر در طول ضخامت پوسته بهدست آمده با تعداد جملههای مختلف در شکل 3 رسم شده است. همان طور که در این شکل دیده می شود، با افزایش تعداد جملات سریها، مقدار تنش محاسبه شده همگرا شده بهطوری كه در مقدار 30 جمله، تغييرات تنش ناچيز مي باشد. بههمين دليل، روش حل تحلیلی -عددی با همین تعداد جمله انجام شده و از پاسخهای حاصل در بهینهسازی به کمک الگوریتم ژنتیک استفاده شده است. برای انجام بهینهسازی با الگوریتم ژنتیکی، تعداد اعضای جمعیت و نرخ جهش بهترتیب برابر با 20 عضو و پنج درصد در نظر گرفته شده است. نمودار همگرایی در شکل 4 قابل مشاهده است. در این نمودار، تغییرات تابع هدف تعریف شده مطابق رابطهی (53) با تعداد نسلهای متفاوت نشان داده شده است.

چنانچه از شکل 4 مشاهده میشود، مقدار تابع هدف پس از 45 نسل، تغییری ندارد. همچنین، بهمنظور اطمینان از استقلال پاسخ بهینه از شرایط اولیه و متغیرهای تصادفی آن، بهینهسازی در دفعات متعدد با مقادیر اولیه و تصادفی متفاوت تکرار شده و مشاهده شده است که تمامی حلها به یک پاسخ مشابه منجر میشوند. مقایسهٔ میان بیشینه مقادیر میدان تنش معادل در طول ضخامت یوسته، با تنش مجاز (Sy/FS) در شکل 5 قابل مشاهده (s) است. چنان که مشاهده میشود، این دو مقدار برهم منطبق بوده و بنابراین از این نظر، توزیع درصد حجمی مواد در طول ضخامت پوسته به صورت بهینه می باشد. درصد حجمی ذرات سیلیکون کاربید لازم در راستای ضخامت، برای این حالت بهینه نیز در شکل **6** دیده میشود. لازم بهذکر است که مقدار ضخامت لایهٔ هدفمند حاصل از بهینهسازی برابر با 9/6×9/ ρ متر میباشد.

مہندسی مکانیک مدرس، آبان 1394، دورہ 15، شمارہ 8

www.SID.ir

شکل 6 توزیع درصد حجمی ذرات سیلیکون کاربید در راستای ضخامت تغییرات توزیع تنش با زمان در ضخامت پوسته، بهازای متغیرهای بهینه در سه مقطع از طول پوسته (بهترتیب برای ابتدا، میانه و انتهای پوسته) در شكلهاى 7، 8 و 9 قابل مشاهدهاند.

چنان که در شکلهای 7، 8 و 9 قابل مشاهده است، دیوارهٔ داخلی پوسته و همچنین ابتدای آن بیشینه تنش را داشته و نقاط بحرانی پوسته را تشکیل میدهند، بههمین دلیل نیز در این نقاط از ترکیب مادهٔ هدفمند با استحکام بالا استفاده می شود.

9-نتيجه گيري

در این پژوهش ابتدا روش حل تحلیلی-عددی برای بررسی رفتار مکانیکی پوستهی ساخته شده از مواد هدفمند با لایهٔ پیزوالکتریک که در معرض بارهای متحرک میباشد، پیشنهاد شده است. در این روش از تئوری مرتبه اول برشی و معادلهٔ ماکسول استفاده شده است. خصوصیات فیزیکی و مکانیکی مواد هدفمند با استفاده از قانون اختلاط و هاشین - اشتریکمن

 $\bm{s} = \bm{L}, \ q \!=\! \frac{p}{\bm{A}}$ شکل 9 تغییرات توزیع تنش معادل با زمان در راستای ضخامت برای و تعیین شدهاند. از نتایج بهدست آمده بهمنظور بهینهسازی نحوهٔ توزیع مواد و ضخامت لايهٔ هدفمند استفاده شده است. بدين منظور از تركيب روش نقاط کنترلی با میان یابی به کمک توابع هرمیت استفاده شده است. نتایج، کارایی روش پیشنهادی در بررسی رفتار مکانیکی و نیز بهینه سازی سازههای پوستهای هدفمند را نشان میدهد، بهخصوص اینکه نیازی به استفاده از توابع پیشفرض برای تعیین توزیع مواد وجود ندارد، چراکه استفاده از این توابع محدودیتی در تعیین توزیع بهینهٔ مواد را تحمیل میکنند. علاوه بر آن نشان داده شده است که روش پیشنهادی دارای سرعت همگرایی مطلوب میباشد. همچنین نتایج نشان میدهند که میتوان توزیع بهینهای از مواد بهدست آورد که از نظر استحکام بیشینه استفاده را داشته باشد. در حالی که روشهای متداول ارائه شده در ادبیات فن بهدلیل ماهیت آنها که از توابع پیشفرض نشأت می گیرند، قادر به تعیین توزیع مواد کاملاً بهینه نمی باشند.

10 - پيوست

 $\bar{A}_{ij} = A_{ij}^p + A_{ij}$

مہندسی مکانیک مدرس، آبان 1394، دورہ 15، شمارہ 8

298

 \mathbf{r}

[www.SID.ir](www.sid.ir)

299

$$
\int_{\frac{5}{2}}^{\frac{5}{2}+h_p} P(x_p) dz \left| \frac{\partial}{\partial x} \right|_{\frac{5}{2}}^{\frac{5}{2}+h_p} \frac{\partial}{\partial x} = e_3 \frac{\partial_1^p}{\partial_3^p}
$$
\n
$$
\int_{\frac{5}{2}+h_p}^{\frac{h_p}{2}+h_p} \frac{\partial}{\partial x} \frac{\partial}{\partial x} = e_3 \frac{\partial_1^p}{\partial_3^p}
$$
\n
$$
\int_{\frac{5}{2}+h_p}^{\frac{h_p}{2}+h_p} \frac{\partial}{\partial x} \frac{\partial}{\partial x} = e_3 \frac{\partial_1^p}{\partial_3^p}
$$
\n
$$
\int_{\frac{5}{2}}^{\frac{h_p}{2}+h_p} \frac{\partial}{\partial x} \frac{\partial}{\partial x} = e_3 \frac{\partial_1^p}{\partial_1^p}
$$
\n
$$
\int_{\frac{5}{2}}^{\frac{h_p}{2}+h_p} \frac{\partial}{\partial x} \frac{\partial}{\partial x} = e_3 \frac{\partial_1^p}{\partial_1^p}
$$
\n
$$
\int_{\frac{5}{2}}^{\frac{5}{2}+h_p} \frac{\partial}{\partial x} \frac{\partial}{\partial x} = e_3 \frac{\partial_1^p}{\partial_1^p}
$$
\n
$$
\int_{\frac{5}{2}}^{\frac{5}{2}+h_p} \frac{\partial}{\partial x} \frac{\partial}{\partial x} = e_3 \frac{\partial_1^p}{\partial_1^p} \frac{\partial}{\partial_2^p}
$$
\n
$$
\int_{\frac{5}{2}}^{\frac{5}{2}+h_p} \frac{\partial}{\partial x} \frac{\partial}{\partial x} = e_3 \frac{\partial_1^p}{\partial_1^p} \frac{\partial}{\partial_2^p}
$$
\n
$$
\int_{\frac{5}{2}}^{\frac{5}{2}+h_p} \frac{\partial}{\partial x} \frac{\partial}{\partial x} = e_3 \frac{\partial_1^p}{\partial_1^p} \frac{\partial}{\partial_1^p}
$$
\n
$$
\int_{\frac{5}{2}}^{\frac{5}{2}+h_p} \frac{\partial}{\partial x} \frac{\partial}{\partial x} \frac{\partial}{\partial x} = e_3 \frac{\partial_1^p}{\partial_1^p}
$$

مهندسی مکانیک مدرس، آبان 1394، دوره 15، شما*ر*ه 8

- [8] G. Sheng, X. Wang, Studies on dynamic behavior of functionally graded cylindrical shells with PZT layers under moving loads, *Journal of Sound and Vibration*ǡVol. 323, No. 3, pp. 772-789, 2009.
- [9] K. Liew, X. He, S. Kitipornchai, Finite element method for the feedback control of FGM shells in the frequency domain via piezoelectric sensors and actuators, *Computer Methods in Applied Mechanics and Engineering*ǡ Vol. 193, No. 3, pp. 257-273, 2004.
- [10] A. Alibeigloo, W. Chen, Elasticity solution for an FGM cylindrical panel integrated with piezoelectric layers, *European Journal of Mechanics-A/Solids*ǡVol. 29, No. 4, pp. 714-723, 2010.
- [11] A. Alibeigloo, V. Nouri, Static analysis of functionally graded cylindrical shell with piezoelectric layers using differential quadrature method, *Composite Structures*ǡVol. 92, No. 8, pp. 1775-1785, 2010.
- [12] R. A. Alashti, M. Khorsand, Three-dimensional thermo-elastic analysis of a functionally graded cylindrical shell with piezoelectric layers by

$$
L_{46} = \left[2e_{31e} \int_{\frac{h}{2}}^{\frac{h}{2} + h_{p}} z z_{p} dz - e_{15e} \int_{\frac{h}{2}}^{\frac{h}{2} + h_{p}} P(z_{p}) dz \right] \frac{\partial}{\partial x}
$$

\n
$$
L_{32} = \left(-\frac{\bar{C}_{55}}{R} + \frac{\bar{B}_{22}}{R^{2}} \right) \frac{\partial}{\partial \theta}
$$

\n
$$
L_{55} = \bar{D}_{66} \frac{\partial^{2}}{\partial x^{2}} + \frac{\bar{D}_{22}}{R^{2}} \frac{\partial^{2}}{\partial \theta^{2}} - \bar{C}_{55}
$$

\n
$$
L_{56} = \left[-e_{24e} \int_{\frac{h}{2}}^{\frac{h}{2} + h_{p}} \frac{P(z_{p})}{R^{2}} dz + \frac{2e_{31e}}{R} \int_{\frac{h}{2}}^{\frac{h}{2} + h_{p}} z z_{p} dz \right] \frac{\partial}{\partial \theta}
$$

\n
$$
L_{61} = \frac{h_{p}e_{31e}}{R} \frac{\partial}{\partial x}
$$

\n
$$
L_{62} = \frac{h_{p}e_{32e}}{R^{2}} \frac{\partial}{\partial \theta}
$$

\n
$$
L_{63} = h_{p}e_{15e} \frac{\partial^{2}}{\partial x^{2}} + \frac{h_{p}e_{24e}}{R^{2}} \frac{\partial^{2}}{\partial \theta^{2}} + \frac{h_{p}e_{32e}}{R^{2}}
$$

\n
$$
L_{64} = \left(h_{p}e_{15e} + h_{p}e_{31e} + \frac{e_{31e}}{R} \int_{\frac{h}{2}}^{\frac{h}{2} + h_{p}} z dz \right) \frac{\partial}{\partial x}
$$

\n
$$
L_{65} = \left(\frac{h_{p}e_{24e}}{R} + \frac{h_{p}e_{32e}}{R} + \frac{e_{32e}}{R^{2}} \int_{\frac{h}{2}}^{\frac{h}{2} + h_{p}} z dz \right) \frac{\partial}{\partial \theta}
$$

\n
$$
L_{66} = -\xi_{11e} \int_{\
$$

11- مراجع

- [1] M. Koizumi, FGM activities in Japan, *Composites Part B: Engineering*ǡVol. 28, No. 1, pp. 1-4, 1997.
- [2] M. Woäko, B. Paszkiewicz, T. Piasecki, A. Szyszka, R. Paszkiewicz, M. Tłaczała, Application and modelling of functionally graded materials for optoelectronic devices, *In Proceedings of International Students and Young Scientists Workshop*, Photonics and Microsystems, pp. 87-9, 2005.
- [3] J. Fleig, K. Kreuer, J. Maier, *Handbook of Advanced Ceramics, Materials, Applications, and Processing, pp. 1-60, 2003.*
- [4] M. Ruzzene, A. Baz, Dynamic stability of periodic shells with moving loads, *Journal of Sound and Vibration*ǡVol. 296, No. 4, pp. 830-844, 2006.
- [5] A. Jafari, H. Ghiasvand, Dynamic response of a pseudoelastic shape memory alloy beam to a moving load, *Journal of Sound and Vibration*, Vol. 316, No. 1, pp. 69-86, 2008.
- [6] P. Malekzadeh, A. Fiouz, H. Razi, Three-dimensional dynamic analysis of laminated composite plates subjected to moving load, *Composite Structures*ǡVol. 90, No. 2, pp. 105-114, 2009.
- [7] S. Khalili, A. Jafari, S. Eftekhari, A mixed Ritz-DQ method for forced vibration of functionally graded beams carrying moving loads,

*Composite Structures*ǡVol. 92, No. 10, pp. 2497-2511, 2010.

[www.SID.ir](www.sid.ir)

differential quadrature method, *International Journal of Pressure Vessels and Piping*ǡVol. 88, No. 5, pp. 167-180, 2011.

- [13] A. Jafari, S. Khalili, M. Tavakolian, Nonlinear vibration of functionally graded cylindrical shells embedded with a piezoelectric layer, Thin-*Walled Structures*, Vol. 79, pp. 8-15, 2014.
- [14] X. Kou, G. Parks, S. Tan, Optimal design of functionally graded materials using a procedural model and particle swarm optimization, *Computer-Aided Design*ǡVol. 44, No. 4, pp. 300-310, 2012.
- [15] K.-S. Na, J.-H. Kim, Optimization of volume fractions for functionally graded panels considering stress and critical temperature, *Composite Structures*ǡVol. 89, No. 4, pp. 509-516, 2009.
- [16] S. S. Vel, J. L. Pelletier, Multi-objective optimization of functionally graded thick shells for thermal loading, *Composite structures*, Vol. 81, No. 3, pp. 386-400, 2007.
- [17] A. J. Goupee, S. S. Vel. Two-dimensional optimization of material composition of functionally graded materials using meshless analyses and genetic algorithm, *Computer methods in applied mechanics and engineering*ǡVol. 195, No. 44, pp. 5926-5948, 2006.
- [18] A. J. Goupee, S. S. Vel, Multi-objective optimization of functionally graded materials with temperature-dependent material properties, *Materials and design*ǡVol. 28, No. 6, pp. 1861-1879, 2007.
- [19] L. Qian, R. Batra, Design of bidirectional functionally graded plate for optimal natural frequencies, *Journal of Sound and Vibration*, Vol. 280, No. 1, pp. 415-424, 2005.
- [20] E. Magnucka-Blandzi, K. Magnucki, Effective design of a sandwich beam with a metal foam core, *Thin-Walled Structures*, Vol. 45, No. 4, pp. 432-438, 2007.
- [21] R. Lipton, Design of functionally graded composite structures in the presence of stress constraints, *International journal of solids and structures*ǡVol. 39, No. 9, pp. 2575-2586, 2002.
- [22] A. Sadollah, A. Bahreininejad, Optimum gradient material for a functionally graded dental implant using metaheuristic algorithms, *Journal* of the *mechanical* behavior of biomedical materials, Vol. 4, No. 7, pp. 1384-1395, 2011.
- [23] J. Cho, D. Ha, Volume fraction optimization for minimizing thermal stress in Ni–Al< sub> 2</sub> 0< sub> 3</sub> functionally graded materials, *Materials Science and Engineering: A, Vol*Ǥ334, No. 1, pp. 147-155, 2002.
- [24] J. Cho, D. Ha, Volume fraction optimization for minimizing thermal stress in Ni–Al2O³ functionally graded materials, *Materials Science and Engineering: A*ǡVol. 334, No. 1, pp. 147-155, 2002.
- [25] L. Qian, R. Batra, Design of bidirectional functionally graded plate for optimal natural frequencies, *Journal of Sound and Vibration*, Vol. 280, No. 1, pp. 415-424, 2005.

مہندسی مکانی*ک* مد*ر*س، آبان 1394، دورہ 15، شما*ر*ہ 8 \sim

- [26] A. J. Goupee, S. S. Vel, Two-dimensional optimization of material composition of functionally graded materials using meshless analyses and genetic algorithm, *Computer methods in applied mechanics and engineering*ǡVol. 195, No. 44, pp. 5926-5948, 2006.
- [27] M. Nemat-Alla, Reduction of thermal stresses by composition optimization of two-dimensional functionally graded materials, *Acta mechanica*ǡVol. 208, No. 3-4, pp. 147-161, 2009.
- [28] M. Ashjari, M. Khoshravan, Mass optimization of functionally graded plate for mechanical loading in the presence of deflection and stress constraints, *Composite Structures*, Vol. 110, pp. 118-132, 2014.
- [29] A. Taheri, B. Hassani, N. Moghaddam, Thermo-elastic optimization of material distribution of functionally graded structures by an isogeometrical approach, *International Journal of Solids and Structures*ǡ Vol. 51, No. 2, pp. 416-429, 2014.
- [30] G. G. Lorentz, *Bernstein polynomials*, American Mathematical Soc., 1953.
- [31] H.-S. Shen, *Functionally graded materials: nonlinear analysis of plates and* shells, CRC press, 2009.
- [32ȐJAHM Software, *Material Properties Database MPDB*ǡv7.59, 2012.
- [33] G. Sheng, X. Wang, Thermomechanical vibration analysis of a functionally graded shell with flowing fluid, *European Journal of Mechanics-A/Solids*, Vol. 27, No. 6, pp. 1075-1087, 2008.
- [34] F. Ramirez, P. R. Heyliger, E. Pan, Free vibration response of twodimensional magneto-electro-elastic laminated plates*ǡJournal of Sound and Vibration*, Vol. 292, No. 3, pp. 626-644, 2006.
- [35] F. Vakili-Tahami, M. Zehsaz, A. Mohammad Alizadeh Fard, Multiobjective optimum design of an FG Al-SiC rotating disc with temperature dependent properties based on creep behavior, *Modares Mechanical Engineering*, Vol. 14, No. 12, pp. 23-34, 2014 (In Persian).
- [36] J. N. Reddy, *Mechanics of laminated composite plates and shells: theory and analysis*ǡCRC press, 2004.
- [37] S. Law, J. Bu, X. Zhu, S. Chan, Moving load identification on a simply supported orthotropic plate, *International Journal of Mechanical Sciences*ǡ Vol. 49, No. 11, pp. 1262-1275, 2007.
- [38] S. S. Vel, B. P. Baillargeon, Analysis of static deformation, vibration and active damping of cylindrical composite shells with piezoelectric shear actuators, *Journal of Vibration and Acoustics*ǡVol. 127, No. 4, pp. 395-407, 2005.
- [39] S.S. Law, X.Q. Zhu, *Moving loads: dynamic analysis and identification techniques*ǡCRC Press/Balkema, 2011.
- **Archive** [40] R. L. Haupt, S. E. Haupt, *Practical genetic algorithms*, John Wiley & Sons, 2004.