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In the first part of this study the methods of direct and indirect entering the effect of induced
velocity in blade element theory to achieve lift force in hover flight of Drosophila flapping insect
are investigated. Then new algorithm for Induced velocity correction based on Rankin-Froude
jet theory and direct method is presented. The results of both previous and new methods to
aerodynamic simulation of this insect in hovering flight with combined flapping and pitching
angles were compared with published experimental results. The results of this comparison
indicate one of the models based on the indirect method as the best way to predict the
experimental results. In the second part of this work, the sensitivity of the instantaneous and
mean force, produced by insect modeled wing, is examined with change in six wing important
motion parameters. These parameters include: flapping frequency, phase difference between
flapping and pitching angle, flapping and pitching amplitudes and flapping and pitching variations
with respect to time in flapping cycle. The results show that with increasing frequency and
flapping amplitude lift gradually increases. Also, range of phase difference percentage between
flapping and pitching angle that leads to maximum lift of the wings is introduced. Results also
show that sinusoidal variation of flapping angle in the cycle has more lifts than rectangular
variation.
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4- Translational lift and drag coefficient
5- Induced velocity
6- Rankin-Froude Actuator disk theory
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 Table1 Compare between method of using of blade element theory in present work and past works 
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Fig.1 Definitions about wing element and its movement ]10[  
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Fig.2 schematic of blade element and parameter definitions ]10[  
2    ]10[

2- Flapping axis 
3- Stroke plane 
4- Feather axis 
5- Chord
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Fig.3 tip vortex generation due to wing translational move 
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Fig.4 reading results for translational lift and drag 
coefficient ]13[  

 4  ]13[

]13[ Fig.5 curve fit on mean coefficients at each angle of attack 
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]10[Fig.6 virtual mass about wing (added mass)
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Fig.9 flapping and pitching angle in one period 
9 

]13[Fig.10 plan of wing for validation 
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Fig.8 flowchart of present work program 
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Table2 developed model to investigation on translational lift 
and drag coefficient in present work 
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Fig.11 comparison of translational lift coefficient between four 
models  
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Fig.12 comparison of translational drag coefficient between 
four models 
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Fig.13 validation of instantaneous lift force in three models of 
present work with past works 
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Table3 comparison of mean lift of 3 models with past works 
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Fig.14 frequency effect on lift 
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Fig.15 effect of phase difference present on lift 
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Fig.16 effect of flapping angle amplitude on lift 
16  

Fig.17 effect of maximum pitching angle on lift 
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