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In the present paper, nondeterministic CFD has been performed using polynomial chaos expansion and 
Gram-Schmidt orthogonalization method. The Gram-Schmidt method has been used in the literature for 
constructing orthogonal basis of polynomial chaos expansion in the projection method. In the present 
study, for the first time the Gram-Schmidt method is used in regression method. For the purpose of code 
verification, the output numerical basis of code for uniform and Gaussian probability distribution 
functions is compared to their corresponding analytical basis. The numerical method is further validated 
using a classical challenging test function. Comparison of numerical and analytical statistics shows that 
the developed numerical method is able to return reliable results for the statistical quantities of interest. 
Subsequently, the problem of stochastic heat transfer in a grooved channel was investigated. The inlet 
velocity, hot wall temperature and fluid thermal conductivity were considered uncertain with arbitrary 
probability distribution functions. The UQ analysis was performed by coupling the UQ code with a 
CFD code. The validity of numerical results was evaluated using a Monte-Carlo simulation with 2000 
LHS samples. Comparison of polynomial chaos expansion and Monte-Carlo simulation results reveals 
an acceptable agreement. In addition, a sensitivity analysis was carried out using Sobol indices and 
sensitivity of results on each input uncertain parameter was studied. 
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1- Polynomial Chaos Expansion (PCE) 
2- Generalized PCE 
3- Askey 
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Fig.  1 Comparison of the first six terms of Gram-Schmidt 
polynomials obtained using normal weight function with 
Hermite polynomials 
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Fig.  2 Comparison of the first six terms of Gram-Schmidt 
polynomials obtained using uniform weight function with 
Legendre polynomials 

   -
     

  

    
Table 1 Comparison of numerical and analytical UQ results of 
Ishigami function 
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3.5 3.0328  3.5017  3.5  
  13.8446  20.9209  13.9037  13.8450  

1  0.3139  0.2140  0.3137  0.3139  
2  0.4424  0.3542  0.4382  0.4424  
3  0  0.0142  0.0001  0  
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Fig. 3 Investigated geometry 
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Table 2 Input stochastic variables 

1- Latin Hypercube Sample (LHS) 

       
  

)(  
m/s  0.1  0.05    
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K  310  0.2  
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W/m·K  0.0242  0.1    
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Fig.  4 Probability distribution functions of input stochastic 
variables: (a) inlet velocity, (b) hot wall temperature and (c) 
fluid conductivity 
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Fig.  5 Error of mean and standard deviation, (a) temperature 
and (b) velocity 
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Fig.  6 Distribution of mean and standard deviation of (a) 
temperature and (b) U velocity in the outlet 
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Fig. 7 Contours of (a) mean and (b) standard deviation of 
temperature 
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Fig. 8 Contours of (a) mean and (b) standard deviation of U 
velocity 
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Fig.  9 Contours of (a) mean and (b) standard deviation of V 
velocity 
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Fig. 10 Distribution of Sobol’ indices of (a) temperature and (b) 
U velocity in the outlet 
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