

ماهنامه علمى پژوهشى

دسی مکانیک مدر س

کاربرد روش متعامدسازی گرام-اشمیت در کمی سازی عدم قطعیت مسائل دینامیک سیالات محاسباتی با توابع توزیع احتمال دلخواه

س**عید** صالحی¹، مهرداد رئیسی دهکردی^{2*}

1- دانشجوی دکتری، مهندسی مکانیک، دانشگاه تهران، تهران

2- دانشیار، مهندسی مکانیک، دانشگاه تهران، تهران

* تهران، صندوق پستی 111554563، mraisee@ut.ac.ir

چکیدہ	اطلاعات مقاله
در مقاله حاضر کمیسازی عدم قطعیت در دینامیک سیالات محاسباتی با استفاده از بسط چند جملهای آشوب و روش متعامد سازی گرام -اشمیت مورد بررسی قرار گرفته است. روش گرام- اشمیت در مطالعات پیشین برای تولید چند جملهایهای متعامد بسط چند جملهای آشوب در روش تصویر مورد استفاده قرار گرفته است. برای اولین بار در این مطالعه از روش متعامدسازی گرام -اشمیت برای تولید چند جملهایهای متعامد بسط	مقاله پژوهشی کامل دریافت: 31 خرداد 1394 پذیرش: 17 مهر 1394 ارائه در سایت: 20 آبان 1394
چند جملهای اشوب در روش ر درسیون استفاده شده است. برای اعتبار بخشی به دد عددی توسعه داده شده ابتدا چند جملهایهای درام -اشمیت خروجی کد عددی برای توابع توزیع احتمال گاوسی و یکنواخت با چند جملهایهای متناظر اسکی مقایسه شدند. سپس روش عددی توسعه یافته با انجام آنالیز عدم قطعیت بر روی یک تابع تحلیلی کلاسیک و مقایسه نتایج عددی و تحلیلی صحه سنجی گردید. در ادامه مسئله انتقال حرارت تصادفی در یک کانال شیار دار مورد بررسی قرار گرفت. متغیرهای سرعت ورودی، دمای دیوار داغ و رسانایی سیال با توابع توزیع احتمال دلخواه به عنمان بادامترهای تصادف مسئله در نظر گرفته شد با حفت کردند کد عددی و تصلیلی شده با یک حاکم دیزامیک سیال با توابع توزیع احتمال دلخواه	ک <i>لید واژگان:</i> کمیسازی عدم قطعیت بسط چند جملهای آشوب گرام-اشمیت دینامیک سیالات محاسباتی
به طوال پرامتریای طفادی مستند در طر عرف عرار کرفت. برای اعتبار بخشی به نتایج یک شبیه سازی مونته کارلو با تعداد 2000 نمونه تصادفی نیز انجام گردید. نتایج حاصل نشان گر تطابق بسیار خوب نتایج بسط چند جملهای آشوب گرام-اشمیت و مونته کارلو میباشد. همچنین با مطالعه اندیسهای حساسیت سوبول میزان تأثیر هر یک از پارامترهای تصادفی ورودی بر نتایج مورد بررسی قرار گرفت.	

Application of Gram-Schmidt orthogonalization method in uncertainty quantification of computational fluid dynamics problems with arbitrary probability distribution functions

Saeed Salehi, Mehrdad Raisee Dehkordi

Department of Mechanical Engineering, University of Tehran, Tehran, Iran. * P.O.B. 111554563 Tehran, Iran, mraisee@ut.ac.ir

ARTICLE INFORMATION

ABSTRACT

Original Research Paper Received 21 June 2015 Accepted 09 October 2015 Available Online 11 November 2015

Keywords: uncertainty quantification polynomial chaos expansion Gram-Schmidt

CFD

In the present paper, nondeterministic CFD has been performed using polynomial chaos expansion and Gram-Schmidt orthogonalization method. The Gram-Schmidt method has been used in the literature for constructing orthogonal basis of polynomial chaos expansion in the projection method. In the present study, for the first time the Gram-Schmidt method is used in regression method. For the purpose of code verification, the output numerical basis of code for uniform and Gaussian probability distribution functions is compared to their corresponding analytical basis. The numerical method is further validated using a classical challenging test function. Comparison of numerical and analytical statistics shows that the developed numerical method is able to return reliable results for the statistical quantities of interest. Subsequently, the problem of stochastic heat transfer in a grooved channel was investigated. The inlet velocity, hot wall temperature and fluid thermal conductivity were considered uncertain with arbitrary probability distribution functions. The UQ analysis was performed by coupling the UQ code with a CFD code. The validity of numerical results was evaluated using a Monte-Carlo simulation with 2000 LHS samples. Comparison of polynomial chaos expansion and Monte-Carlo simulation results reveals an acceptable agreement. In addition, a sensitivity analysis was carried out using Sobol indices and sensitivity of results on each input uncertain parameter was studied.

1-مقدمه اکثر نتایج عددی دینامیک سیالات محاسباتی محصول محاسبات قطعی با عددی میتواند زیر سؤال باشد. این قابلیت اطمینان میتواند صحت نتایج پارامترهای ورودی ثابت هستند. قابلیت اطمینان این پیشبینیهای قطعی در سیالات محاسباتی در سالهای اخیر افزایش پیدا کرده است. به دلیل هزینه مسائل کاربردی به دلیل وجود عدم قطعیتهای ذاتی در فیزیک و روشهای محاسباتی زیاد مسائل کاربردی دینامیک سیالات محاسباتی استفاده از

Please cite this article using:

برای ارجاع به این مقاله از عبارت ذیل استفاده نمایید:

S. Salehi, M. Raisee Dehkordi, Application of Gram-Schmidt orthogonalization method in uncertainty quantification of computational fluid dynamics problems with arbitrary probability distribution functions, *Modares Mechanical Engineering*, Vol. 15, No. 12, pp. 1-8, 2015 (in Persian)

روشهای کارا در این زمینه بسیار ضروری میباشد. یکی از روشهای مناسب و کارا در این زمینه روش بسط چند جملهای آشوب ا میباشد. آنچه که امروزه به عنوان تجزیهی چند جملهای آشوب شناخته می شود، برای اولین بار توسط وینر [1] در دهه 30 میلادی ارائه گردید. قانم و اسپانوس [2] این روش را برای اولین بار وارد مسائل مهندسی کردند. آنها از این روش در تحلیلهای طيفى المان محدود تصادفى استفاده كردند. بسط چند جملهاى آشوب همگن توسعه داده در این مطالعات بر پایه چند جملهای های هرمیت و توابع توزیع احتمال گاوسی استوار بود تا دارای همگرایی از مرتبه نمایی باشند. هر چند این بسط برای سایر توابع توزیع احتمال نیز همگرا می گردد، اما نرخ همگرایی به طرز قابل توجهی کاهش مییابد [3]. ژیو و کارنیاداکیس [3] بسط چند جملهای آشوب تعمیم یافته²را بر اساس چند جملهایهای اُسکی³ توسعه دادند که نرخ همگرایی آن برای چند تابع توزیع احتمال استاندارد دیگر نیز از مرتبه نمایی بود. نشان داده شد که توابع توزیع احتمال گاوسی، گاما، بتا و یکنواخت باید به ترتیب با چند جملهایهای هرمیت، لاگر، ژاکوبی و لژاندر استفاده شوند. بسط چند جملهایهای آشوب تعمیم یافته در موارد زیادی از مسائل سیالات و انتقال حرارت استفاده گردیده است. از این جمله می توان به مطالعات جردک و همکاران [4]، لین و همکاران [5]، ون و همکاران [6]، ژیو و همکاران [7] و ژیو و کارنیاداکیس [8] اشاره کرد. در این مطالعات نشان داده شد که نرخ همگرایی بسط چند جملهایهای آشوب تعمیم یافته از مرتبهی نمایی میباشد. این بسط برای توابع توزیع احتمال خارج از چارچوب اسکی همگرا میگردد، اما نرخ همگرایی به شدت کاهش مییابد. این در حالی است که در بسیاری از مسائل واقعی و کاربردی توابع توزیع احتمال متغیرهای ورودی شکل استانداردی ندارند. ون و کارنیاداکیس [9] بسط چند جملهای آشوب چند بخشی را توسعه دادند که می تواند ورودی های تصادفی با توابع توزيع احتمال دلخواه را بكار گيرد. در اين روش با تجزيه كردن فضاى تصادفی یک مجموعه از چند جملهای های متعامد به روش عددی ساخته می شد که دارای نرخ همگرایی نمایی باشند. ویتوین و بل [10] از چند جملهای آشوب گرام-اشمیت برای کمی سازی عدم قطعیتهایی با توابع توزيع احتمال دلخواه استفاده كردند. اين روش بر اساس تركيب بسط چند جملهای آشوب با روش متعامد سازی گرام-اشمیت توسعه داده شده است. برای رسیدن به همگرایی نمایی لازم است، یک مجموعه از چند جملهایهای متعامد استفاده گردد که توابع وزن آنها همان توابع توزيع احتمال متغيرهاي تصادفی ورودی باشد. این مجموعه چند جملهای را میتوان با استفاده از روش متعامد سازی گرام-اشمیت تولید نمود. آنها برای صحه سنجی این روش دو مسئله ارتعاشات جرم-فنر و انتقال حرارت در لوله را در نظر گرفتند و با مقایسه نتایج مربوط به بسط چند جملهای آشوب گرام-اشمیت با نتایج حاصل از شبیه سازی مونته - کارلو صحت عملکرد این روش را اثبات نمودند. آنها برای محاسبه ضرایب بسط چند جملهای آشوب از روش تصویر گلرکین

مسائل دینامیک سیالات محاسباتی توسعه داد شده است. در ابتدا یک تابع تحلیلی چالشی برای صحه سنجی کد توسعه داده شده استفاده گردید. سپس روش توسعه داده شده برای کمی سازی عدم قطعیت جریان سیال و انتقال حرارت در یک کانال شیاردار استفاده گردید. متغیرهای غیرقطعی ورودی سرعت ورودی سیال، دمای دیواره داغ و رسانایی سیال هستند که همگی دارای توابع توزیع احتمال ورودی دلخواه (خارج از چارچوب اسکی) میباشند. نتایج عددی به دست آمده با نتایج حاصل از شبیه سازی مونته کارلو مقایسه گردیده صحت عملکرد روش نشان داده شده است.

سعید صالحی و مہرداد رئیسی دھکردی

2-بسط چند جملهای آشوب

در این مقاله مدل غیر مداخله گر⁴ بسط چند جملهای آشوب برای کمی سازی عدم قطعیت مورد استفاده قرار گرفته است. تئوری و فرمولاسیون ریاضی حاکم بر این مدل در ادامه توضیح داده خواهد شد. به طور کلی در بسط چند جملهای آشوب، میدان تصادفی $(\xi;\xi)$ به دو قسمت قطعی و تصادفی تقسیم میشود. بسط چند جملهای آشوب یک میدان تصادفی از مرتبه q با تعداد n_s میتواند به صورت

$$u(\mathbf{x},\xi) = \sum_{i=0}^{r} u_i(\mathbf{x})\psi_i(\xi)$$
(1)

ارائه گردد. تعداد ضرایب مجهول u_i ها در این عبارت برابرند با:

$$P + \mathbf{1} = \frac{(p + n_s)}{p! n_s!} \tag{2}$$

ها توابع پایه هستند که نسبت به تابع توزیع احتمال ورودی متعامد ψ_i

$$\langle \psi_i \psi_j \rangle = \int_{\Omega} \psi_i(\xi) \psi_j(\xi) \mathsf{PDF}(\xi) \mathsf{d}\xi = \langle \psi_i^2 \rangle \delta_{ji}$$
(3)

در واقع می توان گفت باید توابع پایه طوری برگزیده شوند که نسبت به تابع توزیع احتمال متغیرهای غیرقطعی ورودی متعامد باشند (به عنوان مثال توابع پایه لژاندر و هرمیت به ترتیب برای توابع توزیع احتمال یکنواخت و گاوسی مناسب می باشند).

از آنجا که توابع پایه مشخص و شناخته شده میباشند، در صورتی که ضرایب u_i ها در معادله (1) نیز معلوم باشند، کل بسط چند جملهای آشوب پاسخ سیستم معین خواهد بود. بنابراین مسئله اصلی در اینجا محاسبه ضرایب این چند جملهایها میباشد. این ضرایب میتوانند از طریق روشهای مشابه به روش گلرکین بدست آیند، که به آن روش مداخله گر می گویند. روشهای مداخله گر روشهایی هستند که برای اعمال، نیاز به تغییرات عمده در منبع کد حلگر میباشند. در مقابل اخیراً روشهای غیر مداخله گری پیشنهاد گردیده است که در آنها نیازی به ایجاد تغییر در منبع وجود ندارند. از این جمله روشها میتوان به روش غیر مداخله گر تصویر و رگرسیون اشاره

گردیده است. این روش در واقع همان رگرسیون جواب دقیق
$$(x;\xi)$$
 نسبت
به توابع پایه بسط جملهای آشوب $\psi_i(\xi)$ میباشد. با استفاده از پیشنهاد
هاسدر و همکاران [11]، **(1 + 9)2** بردار **((1 + 9)2, ...,2 =** s^{s}) در
فضای تصادفی انتخاب میشوند. برای این منظور در این مطالعه از روش
نمونهبرداری شبه تصادفی سوبول استفاده شده است. سپس تابع تصادفی
مورد تحلیل در این نقاط نمونه با استفاده از یک حلگر قطعی محاسبه
می گردند. در نهایت دستگاه معادلات فرا تخمین زده شده با استفاده از

4- Non-intrusive

مهندسی مکانیک مدرس، اسفند 1394، دورہ 15، شمارہ 12

استفاده نمودند. می توان نشان داد این روش برای مسائل کاربردی که دارای متغیرهای تصادفی زیادی می باشند، دارای هزینه محاسباتی بسیار زیاد و در مواردی غیرممکن می باشد. برای حل این مشکل می توان از روش هایی مانند نمونه برداری تُنُک و یا روش رگرسیون استفاده نمود. در این مقاله برای اولین بار بسط چند جمله ای آشوب گرام -اشمیت، با استفاده از روش رگرسیون برای کمی سازی عدم قطعیت های دلخواه در

- 1- Polynomial Chaos Expansion (PCE) 2- Generalized PCE
- 3- Askey

2

www.SID.ir

روشهای تجزیهی مقدار یکه یا حداقل مربعات ماندهها قابل حل خواهد بود. بنابراین زمانی که سمت چپ معادله (1) معلوم باشد، ضرایب چند جملهایها میتواند از طریق حل دستگاه خطی زیر بدست آید. چرا که مقادیر توابع پایه نیز در نقاط نمونه مشخص میباشد.

$$\begin{pmatrix} \psi_{0}(\xi^{1}) & \cdots & \psi_{i}(\xi^{1}) & \cdots & \psi_{P}(\xi^{1}) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \psi_{0}(\xi^{s}) & \cdots & \psi_{i}(\xi^{s}) & \cdots & \psi_{P}(\xi^{s}) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \psi_{0}(\xi^{P+1}) & \cdots & \psi_{i}(\xi^{P+1}) & \cdots & \psi_{P}(\xi^{P+1}) \end{pmatrix} \times \begin{pmatrix} u_{0}(x) \\ \vdots \\ u_{i}(x) \\ \vdots \\ u_{P}(x) \end{pmatrix} = \begin{pmatrix} u(x;\xi^{1}) \\ \vdots \\ u(x;\xi^{s}) \\ \vdots \\ u(x;\xi^{P+1}) \end{pmatrix}$$
(4)

به دلیل تعامد توابع پایه، به سادگی میتوان نشان داد که مقدار متوسط و و واریانس پاسخ به صورت (5) و (6) به دست میآیند.

$$\mu = \langle u(x,\xi) \rangle = u_0(x)$$
(5)

$$\sigma^2 = \sum_{i=1}^{P} u_i^2 \langle \psi_i^2 \rangle \tag{6}$$

لازم به ذکر است که در این پژوهش برای تحلیل حساسیت از آندیسهای سوبول استفاده شده است (برای اطلاعات بیشتر به [12] رجوع شود).

3- روش متعامد سازی گرام -اشمیت

در این پژوهش از روش متعامد سازی گرام-اشمیت برای ساخت چند جملهایهای متعامد نسبت به توابع وزنی که همان توابع توزیع احتمال ورودی هستند، استفاده گردیده است. روش گرام-اشمیت یک تکنیک متعامدسازی شناخته شده برای حل مسائل پایههای متعامد میباشد. در این متعامدسازی شناخته شده برای حل مسائل پایههای متعامد میباشد. در این روش یک مجموعه از چند جملهایهای یک بعدی متعامد $\{\psi_j(\xi)\}_{j=0}^p$ با روش یک مجموعه از چند جملهایهای یک بعدی متعامد از الگوریتم کلاسیک گرام-اشمیت:

$$\psi_{j}(\xi) = e_{j}(\xi) - \sum_{k=0}^{J-1} c_{jk} \psi_{k}(\xi) , \quad j = 1, 2, ..., p$$
(7)

$$c_{jk} = \frac{\langle e_j(\xi)\psi_k(\xi)\rangle}{\langle \psi_k(\xi)\psi_k(\xi)\rangle}$$
(8)

ساخته می شوند. که در آن $\{e_j(\xi)\}$ توابع چند جمله ای از مرتبه j هستند. ضرب های داخلی موجود در معادله (8) به صورت عددی با استفاده از انتگرال گیری روی فضای تصادفی با توابع وزن مربوط (تابع توزیع احتمال همان متغیر) محاسبه می گردند. پس از آنکه توابع پایه متعامد مربوط به هر متغیر ساخته شد، توابع چند بعدی متعامد با استفاده از ضرب تانسوری توابع یک بعدی ساخته می شوند.

چند جملهایهای متعامد نظیر هر یک از توابع وزنی را تولید نماید. در ادامه برای اعتبار بخشی به کد کمیسازی عدم قطعیت، تابع تحلیلی ایشیگامی¹ در نظر گرفته شد [12]:

(9) $y = \sin \xi_1 + a \sin^2 \xi_2 + b \xi_3^4 \sin \xi_1$ (9) که در آن متغیرهای ورودی $\pi, \pi = \pi, \pi$ به صورت یکنواخت در $\pi, \pi = \pi, \pi$ که در آن متغیرهای ورودی $\xi_i, i = \pi, \pi$ به صورت یکنواخت در π اینکه شدیداً غیرخطی مورب شدهاند. مزیت این تابع آن است که علی رغم اینکه شدیداً غیرخطی میباشد، دارای حل تحلیلی برای دادههای آماری (اعم از واریانس و اندیسهای سوبول) میباشد. به همین دلیل این تابع در منابع مختلف به صورت گسترده به عنوان یک نمونه آزمایشی برای روشهای مختلف تحلیل حساسیت استفاده شده است [12]. وارایانس و اندیسهای سوبول مرتبه اول آن به صورت تحلیلی قابل محاسبهاند [13]:

$$\sigma^{2} = \frac{a^{2}}{a} + \frac{b\pi^{4}}{a} + \frac{b^{2}\pi^{5}}{a^{2}} + \frac{1}{a}$$
(10)

$$SU_{1} = \frac{1}{\sigma^{2}} \left(\frac{b\pi^{4}}{5} + \frac{b^{2}\pi^{8}}{50} + \frac{1}{2} \right)$$
(11)

$$SU_2 = \frac{a^2}{2} \tag{12}$$

$$SU_3 = \mathbf{0}$$
 (13)

محاسبات عددی و تحلیلی این تابع برای a=7 و b=0.1 انجام گرفت و نتایج آن برای مقادیر مختلف p (مرتبهی چند جملهای) در جدول 1 ارائه شده است. مشاهده می گردد که کد عددی توسعه داده شده توانسته است نتایج قابل قبولی برای این تابع تولید نماید. هر چند به دلیل گرادیانهای شدید و غیرخطی بودن این تابع، برای رسیدن به دقت مناسب به مرتبههای بالای چند جملهای های گرام -اشمیت نیاز است.

polynomials obtained using normal weight function Hermite polynomials

شکل ۱ شش جمله اول چند جملهایهای گرام-اشمیت با تابع وزنی نرمال در مقایسه با چند جملهایهای هرمیت

1- Ishigami

4 - اعتبار بخشی به کد عددی همان طور که پیش تر اشاره شد، در کد توسعه داده شده از روش گرام -اشمیت برای ساخت توابع پایه متعامد با توابع وزنی دلخواه استفاده گردیده است. بنابراین انتظار میرود که در صورتی که توابع وزنی استاندارد اسکی به عنوان ورودی انتخاب گردند، چند جملهایهای نظیر آن را به دست آیند (به عنوان مثال توابع پایه لژاندر و هرمیت به ترتیب برای توابع وزنی یکنواخت و گاوسی). این موضوع جهت اعتبار سنجی کد عددی مورد بررسی قرار گرفت. همان طور که در شکلهای 1 و 2 مشخص است کد عددی به خوبی توانسته

مهندسی مکانیک مدرس، اسفند 1394، دورہ 15، شمارہ 12

www.SID.ir

سعید صالحی و مہرداد رئیسی دھکردی

Fig. 3 Investigated geometry

$$\frac{\partial u_j}{\partial x_j} = \mathbf{0} \tag{14}$$

معادله ممنتوم

شکل ۳ هندسه مورد مطالعه

$$\frac{\partial(u_i u_j)}{\partial x_j} = -\frac{\mathbf{1}}{\rho} \frac{\partial P}{\partial x_i} + \frac{\partial}{\partial x_j} \left(\nu \frac{\partial u_i}{\partial x_j} \right)$$
(15)

معادله انرژي

$$u_j \frac{\partial T}{\partial x_j} = \frac{k}{\rho C_p} \frac{\partial}{\partial x_j} \left(\frac{\partial T}{\partial x_j} \right)$$
(16)

که در آنها، ۷ ویسکوزیته سینماتیک، ρ چگالی، k رسانایی و C_p ظرفیت حرارتی سیال میباشند. متغیرهای غیرقطعی ورودی در نظر گرفته شده در این تحقیق عبارتند از: سرعت ورودی، دمای دیوار داغ و رسانایی سیال. توابع توزیع احتمال در نظر گرفته شده برای این متغیرها به صورت غیر استاندارد و دلخواه انتخاب شدهاند. پارامترهای غیر قطعی ورودی مسئله مورد بررسی در جدول 2 شرح داده شدهاند. همچنین توابع توزیع احتمال پارامترهای ورودی در شکل 4 نشان داده شده است.

برای اعتبار بخشی به نتایج عددی کمی سازی عدم قطعیت، یک شبیه سازی مونته -کارلو نیز بر روی مسئله تصادفی تحت بررسی صورت گرفت. برای این منظور از 2000 نمونه ی اَبَر مکعب لاتین¹ استفاده گردید. روش اَبَر مکعب لاتین دارای نرخ همگرایی بیشتری نسبت به روش مونته کارلوی کلاسیک است (برای مطالعه بیشتر به [14]شود). لازم به ذکر است که برای شبیه سازی مونته -کارلو به دلیل اینکه توابع توزیع احتمال متغیرهای ورودی یکنواخت نیستند، نمی توان نمونه برداری را به صورت یکنواخت انجام داد. بلکه باید طوری این نمونه ها را انتخاب کرد که احتمال رخداد نمونه ها

جدول ۲ پارامترهای تصادفی ورودی

 Table 2 Input stochastic variables

Fig. 2 Comparison of the first six terms of Gram-Schmidt polynomials obtained using uniform weight function with Legendre polynomials

شکل ۲ شش جمله اول چند جملهایهای گرام-اشمیت با تابع وزنی یکنواخت در مقایسه با چند جملهایهای لژاندر

جدول ۱ مقایسه نتایج عددی و تحلیلی آنالیز عدم قطعیت تابع ایشیگامی Table 1 Comparison of numerical and analytical UQ results of Ishigami function

inguini runou on						
بسط چند جملهای آشوب			1 1 - "			
مرتبه 12	مرتبه 9	مرتبه 5	تحليلي			
3.5	3.5017	3.0328	3.5	متوسط		
13.8450	13.9037	20.9209	13.8446	واريانس		
0.3139	0.3137	0.2140	0.3139	اندیس حساسیت 1		
0.4424	0.4382	0.3542	0.4424	اندیس حساسیت 2		
0	0.0001	0.0142	0	اندیس حساسیت 3		

5- نتايج و بحث

در مقاله حاضر روش کمی سازی عدم قطعیت با استفاده از بسط چند جمله ای آشوب گرام -اشمیت، برای انتشار عدم قطعیت های ورودی در مسئله پایای انتقال حرارت تصادفی در یک کانال شیار دار مورد استفاده قرار گرفته است. هندسه مورد مطالعه و شبکه مورد استفاده در شکل 3 نشان داده شده است. همان طور که در این شکل واضح است، هندسه جریان مورد مطالعه یک کانال شیار دار می باشد که دیوار افقی سمت شیار داغ می باشد. سایر دیوارها نیز آدیاباتیک در نظر گرفته شده اند. ارتفاع ورودی کانال برابر m 0.01 در نظر گرفته شده و سیال کاری هوا می باشد. سرعت ورودی هوا نیز در محدوده ی جریان کاملاً آرام در نظر گرفته شده است (70 هج). لازم به ذکر است که شبکه مورد استفاده پس از مطالعه استقلال حل از شبکه انتخاب گردیده معادلات حاکم بر این جریان در فرم تانسوری عبارتند از:

احتمال احتمال	ضريب واريانس	متوسط	واحد	متغير تصادفى
گاوسی بریدہ شدہ	0.05	0.1	m/s	سرعت ورودی (U _{in})
چند جملهای مرتبه 4	0.2	310	К	دمای دیواره داغ (T _{hot})
كسينوسى	0.1	0.0242	W/m∙K	رسانایی سیال (k)

1- Latin Hypercube Sample (LHS)

مهندسی مکانیک مدرس، اسفند 1394، دورہ 15، شمارہ 12

www.SID.ir

فلوئنت انجام گردید. در محاسبات صورت گرفته از روش سیمپل برای کوپلینگ سرعت و فشار استفاده شده است. همچنین کلیهی ترمهای جابجایی با استفاده از روش پادبادسو مرتبه دوم تقریب زده شدهاند. معیار همگرایی کلیهی معادلات نیز برابر ⁵⁻10 در نظر گرفته شده است. در ورودی از شرط مرزی سرعت ثابت و در خروجی از فشار ثابت استفاده شده است. کلیهی نتایج به صورت بی بعد ارائه شده است و برای بی بعد سازی از روابط: $\theta = \frac{T - T_{\text{in}}}{T - T_{\text{in}}}$

$$\sigma = \frac{T_{\text{hot}} - T_{\text{in}}}{T_{\text{hot}} - T_{\text{in}}}$$

$$U = \frac{u}{U_{\rm in}}$$

استفاده شده است.

(18)

محاسبات کمی سازی عدم قطعیت برای مرتبه های مختلف چند جمله ای های گرام - اشمیت (از p=1 تا p=3) انجام شد. مقادیر متوسط و واریانس دما و سرعت خروجی میانگین سیال در هر مورد محاسبه گردید و با مقدار محاسبه شده در شبیه سازی مونته - کارلو مقایسه شد. شکل 5 نشان دهنده ی میزان خطای متوسط و واریانس دما و سرعت خروجی میانگین نسبت به مقادیر مونته - کارلو می باشد. واضح است که در هر دو مورد افزایش مرتبه ی چند جمله ای ها باعث افزایش دقت محاسبات می گردد. به علاوه به نظر می رسد چند جمله ای های گرام - اشمیت مرتبه پنج دقت قابل قبولی برای محاسبه ی متوسط و واریانس ارائه می دهند.

Fig. 4 Probability distribution functions of input stochastic variables: (a) inlet velocity, (b) hot wall temperature and (c)

Fig. 5 Error of mean and standard deviation, (a) temperature and (b) velocity

شکل ⁴ خطای مقادیر میانگین و انحراف معیار (الف) دما و (ب) سرعت U

fluid conductivity

یکسان باشد. برای این منظور ابتدا با استفاده از انتگرالگیری از توابع توزیع احتمال، توابع توزیع انباشته محاسبه گردیدند. با نمونه برداری یکنواخت بر روی معکوس این تابع، نمونههای لازم برای شبیهسازی مونته-کارلو بهدست میآیند.

مهندسی مکانیک مدرس، اسفند 1394، دوره 15، شماره 12

www.SID.ir

پروفیل دمای متوسط خروجی و انحراف معیار آن در شکل \mathbf{b} -الف به نمایش در آمده است. مشخص است که روش بسط چند جملهای آشوب گرام-اشمیت به خوبی توانسته است پروفیل متوسط و انحراف معیار را منطبق بر نتایج مونته-کارلو پیشبینی نماید. علاوه بر این در این شکل دیده میشود که میزان انحراف معیار دما با دور شدن از سمت شیار داغ کاهش مییابد. شکل \mathbf{b} -ب نیز پروفیل متوسط و انحراف معیار سرعت در خروجی کانال را نشان میدهد. این شکل نیز نشان گر تطابق خوب نتایج بسط چند جملهای آشوب گرام-اشمیت و مونته-کارلو است. همچنین در این نتایج دیده میشود بیشترین مقدار را دارد. در دو سمت کانال به دلیل وجود اثرات استهلاکی دیواره که ناشی از شرط مرزی عدم لغزش هستند، مقادیر سرعت کاهش مییابد. در نتیجه انتظار میرود میزان انحراف معیار نیز با توجه به قطعی بودن شرط مرزی سرعت دیوارههای کانال با نزدیک شدن به دیواره کاهش

شکلهای 7 تا 10 کانتورهای متوسط و انحراف معیار دما و سرعت را نشان میدهند. در هر سه شکل مشخص است که در بخشهایی از دامنه محاسباتی که مقادیر پارامتر مورد نظر بیشتر بوده، مقدار انحراف معیار نیز

μ (Gram-Schmidt PCE)

(سمت دیوار داغ) مشاهده می گردد. همچنین میزان انحراف معیار بیشتر است. بر همین اساس بیشترین میزان تغییرات دما در ناحیهی شیار سرعت در راستای x در میانهی کانال و سرعت در راستای y در ورودی و در داخل شیار ماکزیمم است. این نتایج تطابق خوبی با نتایج ویتوین و بل [10] دارند. آنها نیز در مطالعات خود نشان دادهاند که میدان دما در نزدیکی دیواره داغ با دمای غیرقطعی بیشترین میزان انحراف معیار را دارد.

توزیع اندیسهای مرتبه اول سوبول دما و سرعت در خروجی کانال برای هر سه متغیر تصادفی ورودی در شکل10 ارائه گردیده است. در شکل10 الف دیده میشود که در سمت پائین خروجی (نزدیک شیار) اندیس سوبول مربوط به دمای دیواره داغ بیشینه است. به این معنی که عمدهی تغییرات دما به دلیل تغییر در دمای دیواره داغ است. همان طور که دیده میشود با دور شدن از سمت شیار این اندیس سوبول کاهش یافته و اندیسهای مربوط به سرعت ورودی و رسانایی سیال افزایش مییابد. در سمت بالای خروجی کانال رسانایی سیال دلیل اصلی تغییرات دمایی است. در واقع میتوان این گونه توجیه کرد که با توجه به اینکه راستای جریان مانع انتقال سیال داغ به سمت دیواره فوقانی کانال میشود، تنها مکانیزم پخش مولکولی میتواند عامل مؤثر بر توزیع دما در این بخش باشد. بنابراین نقش ضریب هدایت حرارتی غالب خواهد شد. شکل10 -ب نیز نشان میدهد که به دلیل تراکم ناپذیر بودن سیال تنها سرعت ورودی است که باعث ایجاد تغییرات در پروفیل سرعت

(ب)

Fig. 7 Contours of (a) mean and (b) standard deviation of temperature

شکل ۷ کانتورهای (الف) متوسط و (ب) انحراف معیار دما

Fig. 6 Distribution of mean and standard deviation of (a) temperature and (b) U velocity in the outlet

مهندسی مکانیک مدرس، اسفند 1394، دورہ 15، شمارہ 12

www.SID.ir

شکل \cdot ا توزیع اندیسهای مرتبه اول (الف) دما و (ب) سرعت U در خروجی کانال

6- نتيجه گيري

در مقاله حاضر از روش متعامدسازی گرام-اشمیت برای تولید چند جملهایهای متعامد در روش بسط چند جملهای آشوب استفاده شد. برای اعتبار بخشی به کد توسعه داده شده از دو روش استفاده شد. ابتدا با وارد کردن توابع توزیع احتمال استاندارد (مانند یکنواخت و گاوسی) چند جملهایهای خروجی کد استخراج گردید و با چند جملهایهای متناظر آن در طرح اسکی مقایسه شد و تطابق بسیار خوبی مشاهده گردید. سپس برای کمی سازی عدم قطعیت، تابع کلاسیک ایشیگامی که دارای حل تحلیلی برای دادههای آماری است انتخاب شد. نشان داده شد که با افزایش درجهی چند جملهای ها نتایج عددی به سمت نتایج تحلیلی میل میکنند. پس از آن مسئله انتقال حرارت تصادفی در یک کانال شیار دار مورد بررسی قرار گرفت. متغیرهای سرعت ورودی، دمای دیوار داغ و رسانایی سیال با توابع توزیع احتمال به ترتیب گاوسی بریده شده، چند جملهای مرتبه چهار و کسینوسی به عنوان پارامترهای تصادفی مسئله در نظر گرفته شد. همچنین برای اعتبار بخشی به نتایج کمیسازی عدم قطعیت یک شبیهسازی مونته کارلو با تعداد 2000 نمونه نیز انجام گردید. کلیهی محاسبات با یک حلگر حجم محدود و از دقت مرتبه دو انجام گردید. تطابق بسیار خوبی بین نتایج بسط چند جملهای آشوب گرام-اشمیت و مونته-کارلو مشاهده گردید. نشان داده شد که میزان واریانس دما در خروجی کانال در سمت شیار داغ ماکزیمم است و با

شکل ۸ کانتورهای (الف) متوسط و (ب) انحراف معیار سرعت *U*

(ب)

Fig. 9 Contours of (a) mean and (b) standard deviation of V velocity

مهندسی مکانیک مدرس، اسفند 1394، دورہ 15، شمارہ 12

www.SID.ir

- سعید صالحی و مہرداد رئیسی دھکردی
- [7] D. Xiu, D. Lucor, C.-H. Su, G.E. Karniadakis, Stochastic modeling of flow-structure interactions using generalized polynomial chaos, *Journal of Fluid Engineering*, Vol. 124, pp. 51-59, 2002.
- [8] D. Xiu, G.E. Karniadakis, A new stochastic approach to transient heat conduction modeling with uncertainty, *International Journal of Heat Mass Transfer*, Vol. 46, pp. 4681-4693, 2003.
- [9] X. Wan, G.E. Karniadakis, Beyond Wiener–Askey Expansions: Handling Arbitrary PDFs, *Journal of Scientific Computing*, Vol. 27, pp. 455-464, 2005.
- [10] J. Witteveen, H. Bijl, Modeling arbitrary uncertainties using Gram-Schmidt polynomial chaos, In 44th AIAA Aerospace Science Meeting and Exhibit, Reno, Nevada, 2006.
- [11] S. Hosder, R. W. Walters, M. Balch, Efficient sampling for nonintrusive polynomial chaos applications with multiple input uncertain variables, In 9th AIAA Non-Deterministic Approaches Conference, Honolulu, Hawaii, 2011.
- [12] B. Sudret, Global sensitivity analysis using polynomial chaos expansions, *Reliability Engineering and System Safety*, Vol. 93, pp. 964-979, 2008.
- [13] T. Ishigami, T. Homma, An importance quantification technique in uncertainty analysis for computer models. *Proceedings of the ISUMA'90, first international symposium on uncertainty modeling and analysis*, University of Maryland, pp. 398–403, 1990.
- [14] W.L. Loh. On Latin hypercube sampling. *Annals of Statistics*, Vol. 24 No. 5, pp. 2058–2080, 1996.

فاصله گرفتن از آن کاهش مییابد. همچنین مشاهده گردید انحراف معیار سرعت در میانه کانال که سرعت بیشینه است بیشترین مقدار را دارد. علاوه بر این، نتایج تحلیل حساسیت آشکار ساخت که تغییرات دما در سمت خروجی کانال در نزدیکی شیار داغ (پایین) بیشتر متأثر از دمای داغ دیواره است. در حال که در سمت بالای خروجی رسانایی سیال بیشتر مسئول این تغییرات است.

- [1] N. Wiener, The homogeneous chaos, *American Journal of Mathematics*, Vol 60, pp 897–936, 1938.
- [2] G. Ghanem, P. Spanos, Stochastic *Finite Elements: A Spectral Approach*, Springer, Berlin, 1991.
- [3] D. Xiu, G.E. Karniadakis, Modeling uncertainty in flow simulations via generalized polynomial chaos, *Journal of Computational Physics*, Vol. 187, pp. 137–167, 2003.
- [4] M. Jardak, C.-H. Su, G.E. Karniadakis, Spectral polynomial chaos solutions of the stochastic advection equation, *Journal of Scientific Computing*, Vol. 17, pp. 319-338, 2002,.
- [5] G. Lin, C.-H. Su, G.E. Karniadakis, Stochastic solvers for the Euler equations, In 43rd AIAA Aerospace Science Meeting and Exhibit, Reno, Nevada, 2005.
- [6] X. Wan, D. Xiu, G.E. Karniadakis, Stochastic solution for twodimensional advection-diffusion equation, *Journal of Scientific Computing*, Vol. 26, No. 2, pp. 578-590, 2004.

مهندسی مکانیک مدرس، اسفند 1394، دورہ 15، شمارہ 12

www.SID.ir