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Using molecular dynamics simulations, the structural properties and vibrational behavior of
single- and double-walled carbon nanotubes (CNTs) under physical adsorption (functionalization)
of Flavin Mononucleotide (FMN) biomolecule are analyzed and the effects of different boundary
conditions, the weight percentage of FMN, radius and number of walls on the natural frequency
are investigated. As the functionalized nanotubes mainly operate in aqueous environment, two
different simulation environments, i.e. vacuum and aqueous environments, are considered.
Considering the structural properties, increasing the weight percentage of FMN biomolecules
results in linearly increasing the gyration radius. Also, it is observed that presence of water
molecules expands the distribution of FMN molecules wrapped around CNTs compared to that of
FMN molecules in vacuum. It is demonstrated that functionalization reduces the frequency of
CNTs, depending on their boundary conditions in vacuum which is more considerable for fully
clamped (CC) boundary conditions. Performing the simulations in aqueous environments
demonstrates that, in the case of clamped-free (CF) boundary conditions, the frequency increases
unlike that of CNTs with fully clamped and fully simply supported boundary conditions. The value
of frequency shift increases by raising the weight percentage of FMN biomolecule. Moreover, it is
observed that the frequency shifts of SWCNTs with bigger radius are more considerable, whereas
the sensitivity of frequency shift to the weight percentage of FMN biomolecule reduces and this is
more pronounced as the simulation environment is aqueous.
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Fig. 1 Schematic representation of FMN biomolecule 
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Fig. 2 Samples of initial simulation models, a) vacuum, b) 
aqueous environments 
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Fig. 3 Schematic representation of different boundary 
conditions, a) fully clamped, b) Clamped-free, c) fully simply-
supported.  
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Fig. 4 Samples of equilibrated structure of functionalized CNT 
with FMN, a) in vacuum, b) in aqueous environment 
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Fig. 5Variation of gyration radius with number of FMN in 
vacuum 
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Fig. 6 Variation of gyration radius with number of FMN in 
aqueous environment 
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Fig. 8 The effects of different boundary conditions on the 
variation of frequency shift with number of FMN molecules in 
vacuum 
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Fig. 9 The effects of different boundary conditions on the 
variation of frequency shift with number of FMN molecules in 
aqueous environments 
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Fig. 10 The  effects  of  radius  and  number  of  walls  on  the  
variation of frequency shift with number of FMN molecules in 
vacuum 
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Fig. 11 The effects of radius and number of walls on the 
variation of frequency shift with number of FMN molecules in 
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