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The flight dynamics of nine configurations of supersonic continuous deflectable nose guided missiles 
have been investigated. The studied configurations consist of a spherical nose tip, a tangent ogive, a set 
of stabilizing tail fins and a cylindrical body having mid-section flexible enough to form an arc of
circle. So the cylindrical body consists of a fixed part in the vicinity of nose, middle flexible part and 
main body with stabilizers. The effects of fixed length and flexible length parameters on the flight 
dynamics of surface to surface, anti-aircraft and antimissile missiles have been studied. A code has been 
developed to solve full Navier-Stokes equations using finite volume and modified Baldwin-Lomax 
turbulence model. Further, a 3 degree of freedom code has been developed to compare planar flight 
dynamics of missiles. This code consists of a guidance subroutine based on pure pursuit law. The results 
show that even increase of fixed and flexible lengths enhance the maneuverability of the missile, but in 
some scenarios this can lead to increased flight time and more errors in the target engagement. 
Deflected nose relocates mass center away from the axis and a thrust vector torque is created. Study of 
surface to surface scenario shows that this torque improves accuracy of targeting and the ability of 
target dislocation. In air defense missiles, increase of Fix and Flex variables will extend the limits of 
allowable firing angle. However, a heavy nose increases the role of thrust torque and subsequently 
decreases the role of nose geometry.  
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Fig. 1 Missile configuration with deflectable nose 
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Fig.  2 Rotation of the missile to new trim condition caused by 
the torque of deflectable nose   
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Fig.  3 Variation of the pitch moment coefficient versus attack 
angle  
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Fig. 4 Trim curves at Mach number 3 

4  3  

4-   
4-1 - 

 - 
 .- 

) 1(   
)1(  

+ + + = 0 

i v 
  

)  (
  

)2(  + + + = 0 
] 23[ 

 - 
 .) 3( ) 2 (

  : 
( ) = ( ) ( ) + ( ) + ( )  

,
)3(  = 1

4 , 1
3 , 1

2 , 1  



    

      

  

154  1395161  

( )   .k 
)   (

  . ( )   .D 
AD  . 

  ]  .24 [
    

4-2 - 

  .5  
  .

V  d 
    

M   
   )4( )6(  . 

)4(  =  
)5(  =  
)6(  =  

 = =   
   ( )

  .

 ]25[   . 
)7(  

. =
.

= +  
)8(  

. =
.

 
T 

  . 
   

 
  

)9(  =
1 T

.
+ g sin

cos +
0

×  

     
   . 

  . 
10    

  
)10(  . =  

)11(   

)11(  cos sin
sin cos  

 
  

 
]26 [

  

 
Fig. 5 Free body diagram of missile in a moment of flight 
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Fig. 6 Missile trajectory up to a target which located %15 ahead 
of ballistic range 
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Fig. 7 Target location effect on missile trajectory 
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Table 1 Missile impact error in different locations of the target 
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Fig. 8 Impact error of nine missiles, fired at angle of 30° 
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Fig. 9 Impact error of nine missiles, fired at angle of 80° 
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Fig. 10 Impact error of nine missiles, fired at angle of 10° 
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Fig. 11 Thrust effect on improving the accuracy of surface to 
surface missile, fired at angle of 30° 
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Fig. 12 Geometry effect on permanent thrust missile aiming 
error, fired at angle of 30° 
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Fig. 13 Antiaircraft missile trajectory in different firing angles 
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Fig. 14 Comparison between trajectories of missile with and 
without nose deflection limit 
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Fig. 15 Trajectory of nine antiaircraft missile configurations 
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Fig. 16 Angle of attack fluctuations and command power in 
nine antiaircraft missile configurations 
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Table  2 Flight time duration and angle of attack variation in 
nine antiaircraft missile configurations 

Fix  
(Cal)  

  Flex  
(Cal)  

  
)  

  
)   

    
)   

  
)    

0   1 57.135 4.081   -9.133 13.214 
0   2.5 57.285 4.318   -9.122 13.44 
0   5 57.405 4.402   -9.13 13.532 

1.5   1 57.505 4.113   -9.116 13.229 
1.5  2.5 57.52 4.127   -9.128 13.254 
1.5  5 57.445 4.156   -9.115 13.271 
3  1 57.6 3.912   -9.136 13.049 
3  2.5 57.495 3.977   -9.139 13.116 
3  5 57.26 3.738   -8.964 12.702 

  57.6 4.402   -9.139 13.541 
  57.135 3.738   -8.964 12.702 
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Fig. 17 Hit ability of nine antiaircraft missile configurations in 
different target velocities 
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Fig. 18 Hit ability of nine antiaircraft missile configurations, 
neglecting thrust moment 
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Fig. 19 Antiaircraft missile engagement with a target at a speed 
of 950m/s 
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Fig. 20 Antiaircraft missile flight time in different firing angles 
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Fig. 21 Antiaircraft missile flight time in different aircraft 
velocities 
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Fig. 22 Firing angle effect on trajectory and hit probability 
22 

  
Fig. 23 Trajectory and hit probability of nine missile 
configurations, fired at an angle of 56° 
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Table  3 Specifications and flight time of nine missile 
configurations, fired at an angle of 56° 

Fix  
(Cal)  

  Flex  
(Cal)  

  
 

  
(s) 

  
0.7 

  
    

0   1   --- 0.678 9 
0   2.5   --- 0.659 8 
0   5   --- 0.623 6 

1.5   1   --- 0.635 7 
1.5  2.5   --- 0.614 5 
1.5  5  118.1 0.594 3 
3  1  119.5 0.599 4 
3  2.5  117.9 0.589 2 
3  5   114.5 0.576 1 
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Fig. 24 Flight time of nine missile configurations in different 
firing angles 
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Fig. 25 Effect  of  Fix  on  flight  time  and  nearest  proximity  of  
nine missile configurations in different firing angles 
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Fig. 26 Thrust moment created by nose deflection 
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Fig. 27 Thrust moment effect on antiaircraft missile 
maneuverability enhancement 
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Table 4 Nose deflection limit effect on flight time 

  
)  

  
(Ycg 0) 

(Fix=1.5Cal, 
Flex=1Cal) 

  
(Ycg 0) 

(Fix=1.5Cal, 
Flex=1Cal) 

  
(Ycg 0) 

(Fix=3Cal, 
Flex=5Cal) 

  
(Ycg 0) 

(Fix=3Cal, 
Flex=5Cal) 

4 57.505  -  57.26 58.845 

5 56.72 61.05 56.525 57.635 
6 56.36 59.59 56.205 57.055 
7 56.205 58.76 56.09 56.78 
8 56.165 58.3 56.09 56.665 
9 56.2 58.035 56.155 56.655 
10 56.285 57.89 56.275 56.71 

12  56.56 57.825 56.61 56.945 
 

  
Fig. 28 Nose deflection limit effect on flight time 
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Table  5 Effect of nose deflection limit on flight time, 
neglecting thrust moment 

Fix  
(Cal)  

  
Flex  
(Cal)  

  
)  

4   

  
)  

5   

  
)  

6   
  

0   1   60.910 

0   2.5   60.120 

0   5  60.125 58.885 

1.5   1  61.050 59.590 

1.5  2.5  60.010 58.840 

1.5  5 60.375 58.690 57.890 
3  1 61.185 59.335 58.405 
3  2.5 60.165 58.585 57.840 
3  5 58.845 57.635 57.055 

  
Fig. 29 Thrust moment effect on antimissile maneuverability 
enhancement 
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