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 In this work, an analytical micromechanical model based on unit-cell approach is used to study the 
effect of interphase on the non-linear viscoelastic response of multiphase polymer composites. The 
representative volume element of composite consists of three phases including unidirectional fibers, 
polymer matrix and fiber/matrix interphase. Perfect bonding conditions are applied between the 
constituents of composites. The Schapery viscoelastic constitutive equation is used to model the 
nonlinear viscoelastic matrix. Prediction of the presented micromechanical model for the creep response 
of polymer material and two-phase composites shows good agreement with available experimental data. 
Furthermore, the predicted overall elastic behavior of three-phase composites demonstrates close 
agreement with other available numerical results. The effects of material and thickness of interphase on 
the creep-recovery strain curves of three-phase composites are studied in detail. Results show that the 
interphase thickness and material properties have significant effect on the creep-recovery strain 
responses of the three-phase composites under transverse loading. According to micromechanical 
modeling results, it is found that the interphase negligibly affects the nano-linear viscoelastic behavior 
of three-phase composites under axial loading. Effects of the different stress levels and the variation of 
fiber volume fraction on the creep-recovery strain curves of three-phase composites are also 
investigated. 
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Fig. 1 Interphase in aligned fiber-reinforced composites   
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Fig. 2 Representative volume element of the three-phase composites 
with square array 
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Table 1 Prony series coefficients for epoxy [10] 

n (s-1) 
 

Dn×10-6 (MPa-1) 
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Fig. 3 Creep strain of graphite/epoxy under three different stress levels 
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Table 2 Elastic properties of constituents of three-phase composite [34] 
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Table 3 Comparison of transverse elastic modulus (GPa) of three-phase 
composite 

) 
 
4 

 
6 

 
8 

 
12 

] 34[  
  

] 34[  
  

 

12.25 
 

11.61 
 

12.34 

13.71 
 

13.18 
 

13.44 

14.68 
 

13.97 
 

14.13 

15.11 
 

15.04 
 

15.01 

4 
]34[

 .
] 34 [5  .65% 

 .5 
 .

0.01 
0.031.4 0.75%  .5 

 

-0 240 
 240 320 

  .
4   .

1  .  
 )  17 ( .

25 ] 10 .[  
  



    

                  

  

186  1395161  

  
4 5 

)30  (
 .65% %

0.1   
4

 .

 .
= 0 

 .

  
4= 0 

0.18040.121 0.121%  .
t=240 

0.20710.1351 0.1535%  .  
5 )  240 

 .

 .
 .

5t=240.001 

0.02640.0139 0.032%   
6 7  

)30  (  
  

4 ] 34[  
Table 4 Elastic properties of constituents of three-phase glass/epoxy 
composite [34] 
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Table 5 Comparison of transverse elastic modulus with respect to 
elastic modulus of matrix for three-phase glass/epoxy composite with 
different interphase thicknesses 
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Fig. 4 Effects of interphase materials on the creep strain of the 
glass/epoxy composite under transverse loading, applied stress equals 
to 30 MPa 
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Fig. 5 Effects of interphase materials on the recovery strain of the 
glass/epoxy composite under transverse loading, applied stress equals 
to 30 MPa 
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Fig. 6 Effects of interphase materials on the creep strain of the 
glass/epoxy composite under axial loading, applied stress equals to 30 
MPa 
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Fig. 7 Effects of interphase materials on the recovery strain of the 
glass/epoxy composite under axial loading, applied stress equals to 30 
MPa 
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Fig. 8 Effects of effective interphase thickness on the creep strain of the 
glass/epoxy composite under transverse loading, applied stress equals 
to 30 MPa 
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Fig. 9 Effects of effective interphase thickness on the recovery strain of 
the glass/epoxy composite under transverse loading, applied stress 
equals to 30 MPa 
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Fig. 10 Effects of effective interphase thickness on the creep strain of 
the glass/epoxy composite under axial loading, applied stress equals to 
30 MPa 
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Fig. 11 Effects of effective interphase thickness on the recovery strain 
of the glass/epoxy composite under axial loading, applied stress equals 
to 30 MPa 
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Fig. 12 Effects of stress levels on the creep strain of the glass/epoxy 
composite under transverse loading 
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Fig. 13 Effects of stress levels on the recovery strain of the glass/epoxy 
composite under transverse loading 
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Fig. 14 Effects of stress levels on the creep strain of the glass/epoxy 
composite under axial loading 
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Fig. 15 Effects of stress levels on the recovery strain of the glass/epoxy 
composite under axial loading 
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Fig. 16 Effects of fiber volume fraction on the creep strain of the 
glass/epoxy composite under transverse loading, applied stress equals 
to 30 MPa 
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Fig. 17 Effects of volume fraction on the recovery strain of the 
glass/epoxy composite under transverse loading, applied stress equals 
to 30 MPa 
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Fig. 18 Effects of fiber volume fraction on the creep strain of the 
glass/epoxy composite under axial loading, applied stress equals to 30 
MPa 
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Fig. 19 Effects of volume fraction on the recovery strain of the 
glass/epoxy composite under axial loading, applied stress equals to 30 
MPa 
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