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 Topology optimization of structure seeks to achieve the best material distribution in the Pre-determined 
design domain. In this paper, the effect of design parameters including length scale parameter and 
evolutionary volume ratio in improved bi-directional evolutionary structural optimization method with 
soft kill approach is discussed. The main aim of this method is searching for the stiffest structure with a 
given volume of material using finite element method. At each iteration of finite element analysis, 
sensitivity number is calculated for each individual element in design domain and then converted to the 
nodal sensitivity number. With Filter Scheme and using length scale, an improved sensitivity number is 
defined. This number is used as a criterion for rating each element in design domain and determining 
the addition and elimination (remove) of elements. To increase the convergence of the optimization 
process, the accuracy of the new elemental sensitivity numbers is improved by considering the 
sensitivity history. This method is convergent and mesh-independent and there are no checkerboard 
patterns and local solutions in optimal topologies. Using three design samples, a cantilever and classical 
beam and Michell type structure, affecting factors will be discussed on the final design of the structure. 
Change of length scale parameter produces various schemes in final structures in which, with increasing 
this parameter, more iteration is needed for convergent solution. Reducing evolutionary volume ratio 
forms different and even asymmetric topologies. Better optimized topologies are obtained with higher 
evolutionary volume ratios. 
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Fig.1 Nodes located inside the circular sub-domain are used in the 
filter scheme for the ith element [23] 
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Fig.2 The used algorithm in BESO for finding the sensitivity threshold 
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Fig.3 Design domain and support conditions for a cantilever beam 
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Fig.4 Optimal topology for cantilever beam with ER = 1%:       (a) 
= 1.5 mm ; (b) = 2 mm ; (c) = 3 mm 
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(a) 

(b) 

(c) 

Fig.5 Optimal topology for cantilever beam with ER = 2%:       (a) 
= 1.5 mm ; (b) = 2 mm ; (c) = 3 mm 
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Fig.6 Evolution histories of the compliance and the volume fraction for 
fig.5(a,c) 
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Fig.7 Design domain and support conditions for a beam 
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(a) 

(b) 
Fig.8 Optimal topology for beam with ER = 2%:                   (a) 

= 3 mm ; (b) = 4 mm 
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Fig.9 Optimal topology for beam with ER = 1%:                    
(a) = 3 mm ; (b) = 4 mm 
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Fig.10 Evolution histories of the compliance and the volume fraction 
for fig.8 
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Fig.11 Design domain for a beam by two simple supports 
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Fig.12 Optimal topology for beam by with two simple supports with 
ER = 1%: (a) = 3 mm ; (b) = 4 mm 
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Fig.13 Design domain of a Michell type structure with one simple 
support and one roller 
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Fig.14 Optimal topology for Michell type structure with one roller 
support and ER = 1%: (a) = 0.3 m ; (b) = 0.4 m ; (c) 

= 0.6 m 
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Fig.15 Optimal topology for Michell type structure with one roller 
support and  ER = 2%: (a) = 0.3 m ; (b) = 0.4 m ; (c) 

= 0.6 m 
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Fig.16 Design domain of a Michell type structure with two simple 
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(a) 

(b) 

(c) 
Fig.17 Optimal topology for Michell type structure with simple support 
and ER = 1%: (a) = 0.3 m ; (b) = 0.4 m ; (c) = 0.6 m 
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Table 1 Mean compliance of Michell type structure with different 
support conditions and ER = 1% 

  
(m)   

0.3 44.912×10   Nm 65.985×10   Nm 
0.4 45.234×10   Nm 65.814×10   Nm 
0.6 45.910×10   Nm 69.812×10   Nm 
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