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In this paper, the static stiffness and strength as well as fatigue life of adhesively bonded single lap joint 
(SLJ) are numerically studied using the cohesive zone model (CZM). In order to simulate  the SLJ using 
mixed-mode bi-linear CZM, the failure behavior of adhesive in modes II and III is considered the same. 
Fatigue damage propagation is simulated through scripting USDFLD Subroutine in ABAQUS/Standard. 
Static stiffness and strength and fatigue life obtained in this study are consistent with experimental 
results available in literature. Then, the effect of geometric parameters including overlap length, 
substrate thickness, and tapered substrates are investigated. The obtained results reveal that the increase 
of the overlap length would lead to increase in the static strength and fatigue life prediction. While 
increasing substrate thickness results improved fatigue life, there are no a known relations between the 
static strength and substrate thickness due to the changes of the loading modes. Tapered substrates also 
have positive effect on the strength and fatigue life because of more compatible rotations. Therefore, to 
improve the strength and fatigue life of a SLJ, authors suggest greater overlap length and thickness 
along with tapered substrates. 
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Fig. 1 bi-linear traction-separation law [21] 
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Fig. 2 fatigue damage evolution [22] 
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Fig. 3 geometry of simulated single lap joint [22] 
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Table 1 material properties of single lap joint specimen [26] 

  
)MPa(  

  
)MPa(  

2024-T3  68400  0.33  570  

FM73  2000  0.4  45  
  

2 FM73 ]22[  
Table 2 traction – separation parameters of FM73 [22] 

) MPa(  ) MPa(  I )kJ/m2(  II )kJ/m2(  

114 66  1.4  2.8  
  

1 viscous damping coefficient 

     

Fig. 4 finite element meshing 
4   

  
Fig. 5 geometry of simulated single lap joint [22] 
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Table 3 traction – separation parameters of mode I and II [22] 
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Table 4 the experimental and predicted static strength 
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Fig. 6 actual fatigue loading 
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Fig. 7 The flowchart of the fatigue damage model in Abaqus  
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Fig. 8 predicted load-displacement curve of SLJ 
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Table 5 comparison of predicted SLJ fatigue life  
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Table 6 investigation of L effect on strength and stiffness of SLJ 

  

1 overlap length  
2 tapered adherend 
3 peeling mode 
4 shearing mode 
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Table 7 investigation of t effect on strength and stiffness of SLJ 

t/t0 ) kN(    ) kN/mm(  

     
  

    
0.5  7.83  7.41   19.38  16.27  
0.8  8.61  8.32   25.04  23.31  
1.0  9.57  9.57   27.78  27.78  
1.2  8.65  9.13   29.72  32.44  
1.5  7.93  9.92   31.38  38.93  
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Fig. 9 geometrical parameters of base SLJ  
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Fig. 10 comparison of rotation of SLJ for different t/t0  
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8   
Table 8 investigation of h effect on strength and stiffness of SLJ 

h/t0 ) kN(    ) kN/mm(  

     
  

    
0  9.57  9.57   27.78  27.78  

0.2  9.42  9.14   27.46  27.51  
0.4  8.98  9.09   27.41  27.33  
0.6  9.43  9.23   27.17  27.04  
0.8  9.37  9.12   26.86  26.55  

      
)11 .(
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Fig. 11 effect of tapered adherend on shear stress in overlap length 
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Fig. 12 effect of tapered adherend on peel stress in overlap length 
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Fig. 13 investigation of t effect on fatigue life of SLJ 
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Fig. 14 investigation of L effect on fatigue life of SLJ 
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Fig. 15 investigation of h/t0 effect on fatigue life of SLJ 
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