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 Stenting is considered to be the favoured tool for therapy of coronary stenosis disease. However, despite 
the many advantages of this treatment strategy, its outcome may be undermined by the restenosis 
occurrence in the stent deployment site. Observations have shown that stent deployment in the artery 
alters the hemodynamic parameters such as wall shear stress and vortice size and prepares the 
conditions for in-stent restenosis development. Considering this fact, in this paper, the effect of some 
geometrical parameters such as the shape and the size of the stent strut on the wall shear stress 
distribution and vortice size is investigated. Furthermore, employment of a stent with partial flexible 
strut is suggested to decrease the restenosis risk, and the effect of the flexible part stiffness is explored. 
For this purpose, the interaction between the blood flow and the flexible part is simulated by arbitrary 
Lagrangian-Eulerian approach in the framework of the finite element method. The results indicate that 
in stents with circular strut, the partial flexibility of the cross-section can be effective in reducing the 
restenosis risk by lowering the maximum value of the wall shear stress and considerably decreasing the 
vortice size. On the other hand, in stents with rectangular struts, not only does it not decrease the shear 
stress maximum value, but also, the vortices size is significantly increased and may lead to increased  
restenosis risk. 
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Fig. 1 Three-dimensional view of stent model in coronary artery 
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Fig. 2 A simplified view of the problem for denoting the boundaries 

2  

1 3  
Table 1 Boundary conditions applied on boundaries of Fig. 2  

  2  

   
) 6( 

    
    

    
    

  
 

) 3( 

1 Partitioned strong coupling approach 

 
Fig. 3 The sequential fluid-structure coupling algorithm 
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Fig. 4 Convergence test results for element number 
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Fig. 5 Cross-sections of the stents struts used for verification 
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Table 2 Comparison of maximum shear rate (1/s) in Newtonian and 
non-Newtonian models  
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Table 3 Comparison of maximum shear stress (Pa) in stents of “Fig. 5” 
with results of Ref. [9]  
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Fig. 6 Three rectangular cross-sections used in modeling stent struts 
6    

  ." 7" 
     .

 .

 .
 

 .

  .
 "8"   .

= 0.5   
   .

 
 

 .
] 9,8 .  [

 .  
  

 

Fig. 7 Wall shear stress distribution along the circular cross-section for 
different values of w/h 
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Fig. 8 Streamlines developed around struts of different circular stents. 
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Fig. 9 Wall shear stress distribution along rectangular cross-section for 
different values of w/h 
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Fig. 10 Streamlines developed around struts of different rectangular 
stents 
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Table 4 Variation of the ratio of the vortex length to the strut cross-
section length for different rectangular stents 
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Table 5 Comparison of vortex length for circular and rectangular cross-
sections 
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Fig. 11 Comparison of wall shear stress for circular and rectangular 
cross-sections 
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Fig. 12 Cross-section of partial flexible circular and rectangular struts 
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Fig. 13 Shear stress variation vs. elasticity modulus of flexible part in 
circular stent 
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Fig. 14 Shear stress distribution around rigid and flexible circular struts 
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Fig. 15 Variation of vortex normalized length (vortex length divided to 
stent cross section length) vs. elasticity modulus of flexible part in 
circular stent 
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Fig. 16 Shear stress variation vs. elasticity modulus of flexible part in 
rectangular stent 
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Fig. 17 Shear stress distribution around rigid and flexible rectangular 
struts 
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Fig. 18 Variation of vortex normalized length (vortex length divided to 
stent cross section length) vs. elasticity modulus of flexible part in 
rectangular stent 
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