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 Electrospray is a branch of the scientific area of electrohydrodynamics which is based on electrical 
charging of liquids. The electrospray governing equations are a combination of hydrodynamic and 
electrostatic equations to which the addition of liquid breakup process escalates their complexity. This 
research work aims at developing a numerical solver to simulate the electrospray process in an emitter-
disc configuration using Heptane as a working liquid under various electrical potentials. The simulation 
results in comparison with CFD and experimental data show good agreement both quantitatively and 
qualitatively. The results clearly have captured the formation of liquid flow profiles at the emitter exit, 
demonstrating various electrospray modes. These modes initiate a microdripping mode at the lowest 
voltage, i.e. 3.5kV, prompting consecutively to spindle and pulsating cone-jet modes and ending in a 
stable cone-jet mode at the highest charging voltage, i.e. 6.5kV. In addition, it is also observed that the 
liquid cone and the vortex shaped within it would shrink as an increase in the electric potential is 
imposed. Although the increase in electric potential results in rise of the maximum magnitudes of 
electric field and velocity, the electric charge accumulation at all electric potential values occurs on the 
outer surface of the liquid flow, implying its electrical conductivity. 
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Fig. 1 A general view of electrospray charging and atomization 
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Fig. 2 Formation of various spray modes under the variation of liquid 
flow rate and electric potential 
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Fig. 3 Flow chart of solution approach 

3   

 
Fig. 4 Physical domain 
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Fig. 5 A schematic of computational domain 
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1   
Table 1 Dimensions of geometrical configuration 

    
(mm) 

  
(mm) 

  
(mm)   

(mm) 
  0.12  0.45  1.5  30  

2     
Table 2 Physical properties used in simulation 

  
  
(kgm-3) 

  
(mPa s) 

(Sm-1) 
    

(Nm-1) 
  
  

684 
  

1.2  

0.61 
  

0.0183  

1.15×10-6 
  

1.05×10-15  

1.93  
 

1  
  

0.0186  

 
Fig. 6 Variation of maximum magnitude of electric field against 
minimum cell size at different z lines 
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Fig. 7 A comparison between the present simulation data with other 
experimental and CFD results 

7  CFD  

  
Fig. 8 Electric potential distribution in computational domain for  
Q = 3mlith-1 and  = 3500V 
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Fig. 9 Transient formation process of Heptane droplet at emitter exit for 
Q = 3mlith-1 and  = 3500V 
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Fig. 10 Transient formation process of Heptane droplet at emitter exit 
for Q = 3mlith-1 and  = 5000V 
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Fig. 11 Transient formation process of Heptane droplet at emitter exit 
for Q = 3mlith-1 and  = 5500V 
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Fig. 12 Transient formation process of Heptane droplet at emitter exit 
for Q = 3mlith-1 and  = 6500V 
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Fig. 13 Liquid meniscus formation at emitter exit for Q = 3mlith-1, 
 t = 0.55ms and various electric potentials 
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Fig. 14 Stream lines for Q = 3mlith-1 and various electric potentials 
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Fig.15 Distribution of electric field magnitude in emitter exit 
for Q = 3mlith-1,  = 3500V at t = 0.5ms 
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Fig. 16 Distribution of electric field magnitude in emitter exit 
for Q = 3mlith-1,  = 5000V at t = 0.22ms 
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Fig. 17 Distribution of electric field magnitude in emitter exit 
for Q = 3mlith-1,  = 5500V at t = 0.24ms 
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Fig. 18 Distribution of electric field magnitude in emitter exit 
for Q = 3mlith-1,  = 6500V at t = 0.5ms 
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Fig. 19 Distribution of electric charge density in emitter exit 
for Q = 3mlith-1 and various electric potentials 
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