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In this paper, modeling of Min-Max controller and evolutionary multi-objective optimization for gain 
tuning controller of turbofan engine are presented. To achieve this purpose, first a turbofan engine is 
modeled in GSP software. Then engine parameters model, by using extracted GSP simulation data and 
based on NARX structure of neural network is developed. For model validation a test fuel signal is 
produced and model performance is assessed. Next, turbofan engines control requirements and 
constraints are described and a fuel controller based on Min-Max strategy is designed and diverse 
control loops in controller are described. Each of these loops has a proportional controller  known as 
control gain of the min-max controller. For determining the gains of the controller, gain tuning process 
is formulated as a Genetic Algorithm Optimization problem in order for GA algorithm to find the best 
solution via its evolutionary generations. In this optimization problem, the settling time during 
acceleration and deceleration, engine fuel consumption and the amount of engine emissions are 
considered as objective functions to be minimized. The obtained results from simulation of optimized 
controller and engine show the final controller not only optimizes objective functions but also satisfies 
all control modes of engine during acceleration and deceleration modes. 
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Fig. 1 General scheme of NARX structure 
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Fig. 2 Fuel signal for training model versus time 

2   

1   
Table 1 Attributes and properties of models 

Regression   NRMSE 
    

1  1.923 0.402  0.0008  (10 10 10 8) 
(0:1,1:2)  

N1 

 1  3.705  0.270  0.0008  (10 10 10 8) 
(0:1,1:2)  

N2 

0.9999  0.054  0.005  0.0015  (15 12 12 10) 
(0:3,1:4)  

Ps3 

0.9999  0.037  0.004  0.0015  (10 10 10 10 8) 
(0:1,1:2)  

NOx 

0.9998  0.006  0.001  0.0023  (10 10 10 10 8 6) 
(0:3,1:4)  

Co 

0.9999  0.027  -0.003  0.0017  (10 10 10 10 8 6) 
(0:2,1:3)  SN 

 

  
Fig. 3 Fuel signal for testing model versus time 
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Fig. 4 Comparison between testing results and GSP outputs 
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Fig. 5 Turbofan engine requirements and constraints 

5   

]25.[ 

 .-
 

 .

 .
 .

-   .
 

 .  

4-2 - -   

 

]27,26[.  

1 -  :
  .

 
2 -  :

 
3 -  :

 
4 -  :

 -
 . 

 
5 -  :

 .
. 

6 -  :

 .
.  

4-3 -  -   

 .
-   .

) 2 (
  

= max(min( , ,  
)2(  , ), , ) 

www.sid.ir


www.SID.ir

Arc
hive

 of
 S

ID

    

 -       

1395165  383  

"6" 
 .

) 3 ( -
  

)3(  = +  

 .
 .

  

5 -   
 .

]29,28.[       
    .

 .
 .

 .
]30 .[

 
  

 . -

 .
       

   

Fig. 6 Min-Max Fuel controller 
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Fig. 7 Non-dominated sorting of Genetic algorithm steps  
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Fig. 8 Applying genetic algorithm to the problem 
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Table 2 Genetic algorithm parameters 

    
1    50 

2    Rank  

3    Tournament (4)  

4    Uniform  

5    0.8  

6    0.1  

7    Taguchi & Yakota  

8  )   100 

+
+ Engine

GA
Optimization

F-Transient

F-Steady

KN2max

KPs3max

KACC

KPs3min

KDEC

Min

KN1

Max

Engine Parameters
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Fig. 9 Pilot command for simulating all modes 
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Fig. 10 Pareto for optimization problem 
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Fig. 11 Best solution of generations 
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Fig. 12 Controller and engine simulation diagram 
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Fig. 13 Emission production diagram during flight 
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Fig. 14 Calculated fuel by loops  
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Fig. 15 Input fuel and acceleration diagrams 
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