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In this article the composite wing aeroelastic instability speed is optimized by genetic algorithm relative 
to fiber angle for different layers and follower forces. Aircraft wing is modeled as a beam with two 
degrees of freedom, which is a cantilever, with thrust as a follower force and mass of the engine. For 
structural modeling of composite wing the layer theory has been used and unsteady flow assuming 
subsonic and incompressible flow was used for aerodynamic model in the time domain. Using the 
assumed mode the wing dynamic equations of the motion were derived by Lagrange equations. Linear 
flutter speed according to the eigenvalues of the motion equations was calculated. The process of flutter 
speed calculation has been converted to computer code in which the number of layers, angle of fibers in 
each layer, the mass of the engine, and the thrust are input variables and the flutter speed is its output. 
Using Genetic Algorithm, optimum flutter speed was obtained by changing the angle of fibers. Finally, 
the impact of the number of layers, the mass of the engine, and thrust on optimum flutter speed has been 
investigated. 
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Fig. 1 The wing with engine configuration[13] 
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Fig. 2 Side view of wing [13] 
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Fig.  3 The wing situation before and after the deformation of 
elastic[17] 
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Fig. 4 Flutter speed computation flowchart 
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Table 1 Geometrical specification of the composite wing 

    

) L(  16 (m)  

 0.5 (m)  

 0.75 (kg/m) 

 0.1 (kg.m) 

 0.0889 (kg.m-3) 

2  
Table 2 Material specification of the composite wing 

    
E1 2 × 10  (Pa) 

E2 5 × 10  (Pa) 

G12 5 × 10  (Pa) 

v12 0.25 

 0.24 (m)  

 0.017 (m) 

3  
Table 3 Validation of composite wing 

   ) m/s(  ) m/s( 

]21[ 32.2 ]19[ 135.71 

  32.4   ]22[  136.24 

     135.9 

1 Selection 
2 Crossover 
3 Mutation 

 .  
4 5 1 5 
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a) Frequency vs air speed plot 

 (  

 
b) Damping vs air speed plot 

 ( 
Fig. 5 Variation of frequency and damping vs air speed for Goland 
wing 
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Fig. 6 Flutter speed optimization process of wing without engine mass 
and thrust for the various layers 
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Fig. 7 Optimum flutter speed of wing without thrust for the various 
layers 
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Fig. 8 Flutter speed optimization process of  2 layer wing for 
different thrust 

8 2   

  
Fig. 9 Flutter speed optimization process of  4 layer wing for different 
thrust 

9 4    

  
  

Fig. 10 Flutter speed optimization process of  8 layer wing for different 
thrust 

10 8  

 
Fig. 11 Flutter speed optimization process of  10 layer wing for 
different thrust 

11 10  

  
Fig. 12 Flutter speed optimization process of  p=0 thrust for different 
layers 

12 p=0 
  

  
Fig. 13 Flutter speed optimization process of  p=1 thrust for different 
layers 

13 p=1  
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Fig. 14 Flutter speed optimization process of  p=2 thrust for different 
layers 

14 p=2  
 

 
Fig. 15 Flutter speed optimization process of  p=3 thrust for different 
layers 

15 p=3 
 

 
Fig. 16 Flutter speed optimization process of  p=4 thrust for different 
layers 

16 p=4 
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Fig. 17 Optimum flutter speed for different layers 

17  

Fig. 18 Optimum flutter speed for different thrust forces 
18    
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Table 4 Results for wing without engine mass and thrust 

     )m/s(    ) m/s(  

2  [0.003]s  4.22  [-2.7]s 26.5  
4  [0.001,0.04]s  4.22  [-6.5,4]s 31.1  
8  [-0.53,0.2,-0.23,-1.06]s  4.9  [-45.5,46,46,-29]s 45.7  

10  [-0.085,-0.509,0.505,0.39,-
0.5]s  

4.44  [-45,45,45,44,39]s 46.4  

5  
Table 5 Results for wing with engine mass and zero thrust 

      )m/s(    ) m/s(  
2  [-0.19]s  5.4  [-2.8]s 15.6  
4 [-1.75,-0.024]s  15.01  [-5,16.5]s 32.3  
8  [1.77,-1.27,-0.57,-0.52]s  5.27  [37,-55,-22,11.5]s 42.75  

10  [0.012,0.12,0.048,0.62,0.47]s  5.01  [31.7,-51.3,51.5,-25,-1.5]s 42.7  

  
6 p=1 

Table 6 Results for wing with mass and p=1 thrust 
      )m/s(    ) m/s(  

2  [0.0056]s  4.3  [-2.8]s 15.6  
4  [-0.487,0.485]s  4.74  [-6.2,29]s 40.2  
8  [0.024,0.16,0.1,0.7]s  4.24  [-9.2,7.5,-24,24]s 44.2  
10  [0.053,0.15,0.15,0.036,0.34]s  4.23  [-16,6,2.3,-2,2.2]s 44  

7 p=2  
Table 7 Results for wing with engine mass and p=2 thrust 

      )m/s(    ) m/s(  

2  [-0.5]s  4  [-4.3]s 18.1  
4  [0.08,-0.6]s  3.6  [-9,27]s 45.7  
8  [0.05,0.08.2,0.3,0.96]s  3.53  [-16.7,-2.2,25,21]s 53.1  
10  [-2.16,-0.84,1,1.13,-1.4]s  5.15  [-18,-8.3,19.6,1.3,0.3]s 52.8  

8 p=3  
Table 8 Results for wing with engine mass and p=3 thrust 

      )m/s(    ) m/s(  

2  [-0.5]s  0  [-4]s 18.5  
4  [1.2,-0.5]s  0  [-11.6,7.8]s 30.3  
8  [-0.26,1.09,-0.88,-0.52]s  0  [-9.3,-15.8,3,24]s 30.5  
10  [0.033,0.85,-1.8,-0.05,-2.06]s  0  [-16,-3,-7.5,-0.5,5.7]s 30.3  

9 p=4  
Table 9 Results for wing with engine mass and p=4 thrust 

      )m/s(    ) m/s(  

2  [2.3]s  0  [-8]s 13.6  
4  [1.15,1.5]s  0  [-18.5,-7]s 19.2  
8  [0.56,1.66,0.52,-0.9]s  0  [-19.5,-14,-10,-8]s 19.2  
10  [-0.35,0.9,2.5,-2.2,0.03]s  0  [-17,-18.6,-16.2,-5.7,15.7]s 19.3  
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