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 Engineering analyses of beams are based on the proper guesstimate of deformation fields. Up until now, 
the analyses of beams have been widely proposed and experienced in elastic region of materials 
behavior. This paper considers the elastoplastic engineering analysis of beams. In this regard, following 
the definition of a proper deformation pattern known as classical Euler- Bernoulli model and using the 
variational calculus principals the governing equations are extracted. In this analysis the behavior of 
material obeys the Romberg-Osgood model and yielding is based on the von Mises criterion. Different 
numerical solutions are suggested for the solution of these complicated equations in the literature.  In 
this paper the exact solution is provided for a thin beam under the action of uniformly distributed load 
by using the two analytical methods of homotopy and Adomian for the clamped- clamped boundary 
conditions. In verification phase, the deformation of beam is compared with the results of Abaqus 
software. Different graphical representations are provided for the results of the analytical solutions and 
simulations. Using these data, the level of consistency between the simulated solutions on one side and 
the Adomian and homotopy techniques on the other side, are assessed. At the end, the validity of 
applying the classical engineering theory of beams in the elastoplastic analyses is discussed. 
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Fig. 1 Loading and geometry of the studied beam  
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Fig. 3 Mesh sensitivity in terms of element numbers 
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Fig. 4 Non-dimensional vertical deflection for the slender clamped 
beam under uniform load action 
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Fig. 5 The effect of  factor on maximum deflection of beam in 
different orders of homotopy method 
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Fig. 6 Non-dimensional vertical deflection of elastoplastic beam 
centerline 
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Fig.  7 Longitudinal distribution of  at a distance /4  above the 
elastoplastic beam centerline 
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Fig. 8 A composite analytical-simulation illustration for the contours of 
vertically deflected points(mm) in elastoplastic beam 
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Fig. 9 Analytical and simulation results for the contours of von-Mises 
stress(Pa) in elastoplastic beam 
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Fig. 10 Analytical and simulation results for the contours of plastic 
strain(m/m) in elastoplastic beam 
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Fig. 11 Analytical and simulation results for the  component at the 
mid-span cross section of elastoplastic beam 
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Fig. 12 Analytical and simulation results for the mid-span transversal 
distribution of in the elastoplastic beam  
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Fig. 13 Analytical and simulation results for the mid-span transversal 
distribution of  in the elastoplastic beam 
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Fig. 14 Analytical and simulation results for the mid-span transversal 
distribution of  in the elastoplastic beam 
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Fig. 15 Analytical and simulation results for the mid-span transversal 
distribution of  in the elastoplastic beam 
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Fig. 16 A comparison of  at several cross sections of elastoplastic 
beam obtained by homotopy method 
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Fig. 17 A comparison of  at several cross sections of elastoplastic 
beam obtained by homotopy method 
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Fig. 18 A comparison of  at several cross sections of the elastoplastic 
beam obtained by homotopy method 
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Fig. 19 A comparison of  at several sections of elastoplastic beam, 
obtained by homotopy method 
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Fig. 20 A comparison of  at several cross sections of the 
elastoplastic beam, obtained by homotopy method 
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