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 The laminated composites have many advantages such as high specific strength and specific stiffness. 
Despite these advantages, they are prone to different damage mechanisms. This paper focuses on 
quantification of damage mechanisms in standard Open-Hole Tensile (OHT) laminated composites 
using Acoustic Emission (AE) and Finite Element Method (FEM). These damages include three main 
mechanisms, matrix cracking, fiber/ matrix debonding and fiber breakage. To this aim, OHT tests were 
carried out. The specimens were fabricated from two types of glass/epoxy composite materials with 
[0]5S lay-up and [90]5S lay-up. AE accompanied with wavelet-based approach was then used to detect 
and quantify damage mechanisms of the specimens. FE analysis based on Hashin criteria was then 
utilized to simulate the damage mechanisms in the specimens and to validate the AE-wavelet based 
results. Comparison of the applied methods shows that the results of the AE-wavelet based approach are 
in very good agreement with the FEM results. Finally, it was concluded that the AE method has a good 
applicability to determine the damage mechanisms in laminated composite structures and to predict the 
remaining life-time of the structure. 
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Table 1 Characteristics of specimens with their stacking sequences. 
    (mm) 

A 0-0 [0]5S 2.2 
B 90-90 [90]5S 2.2 

 

 
Fig. 1 The experimental setup of the OHT tests. 
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Fig. 2 The pure a) matrix, and b) fiber tensile tests. 
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Fig. 3 The dominant frequency range of AE signals for pure a) matrix 
cracking, and b) fiber breakage. 
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Fig. 4 FFT results for the 3rd level WPT components. 

4  

 
Fig. 5 Energy distribution results of the 3rd level WPT components for 
specimens a) A, and b) B. 
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Table 2 Percentage of different damage mechanisms obtained from 
WPT analysis.  

  WPT 

 A B 

  29 42 
 49 46 

 22 12 

3   /  
Table 3 The mechanical properties of glass/ epoxy OHT specimens. 

E1 
(MPa) 

E2 
(MPa)  

G12 
(MPa) 

G13 
(MPa) 

G23 
(MPa) 

24000 7200 0.28 5830 5830 4500 

4     /   
Table 4 Damage initiation properties of glass/ epoxy OHT 
specimens. 
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Fig. 6 FEM contour plots for a) matrix tensile, b) matrix compression, 
c) fiber tensile, d) fiber compression, and e) fiber/matrix debonding 
damages of specimen A. 
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Fig. 7 The real and FE simulated damage contour for specimen A. 
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Fig. 8 FEM contour plots for a) matrix tensile, b) matrix compression, 
c) fiber tensile, d) fiber compression, and e) fiber/matrix debonding 
damages of specimen B. 
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Fig. 9 The real and FE simulated damages contour for specimen B. 
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Table 5 The damage quantification results of WPT and FE analysis for 
specimens. 

 FEM 
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